ترغب بنشر مسار تعليمي؟ اضغط هنا

Gravitationally lensed quasars and supernovae in future wide-field optical imaging surveys

102   0   0.0 ( 0 )
 نشر من قبل Masamune Oguri
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Cadenced optical imaging surveys in the next decade will be capable of detecting time-varying galaxy-scale strong gravitational lenses in large numbers, increasing the size of the statistically well-defined samples of multiply-imaged quasars by two orders of magnitude, and discovering the first strongly-lensed supernovae. We carry out a detailed calculation of the likely yields of several planned surveys, using realistic distributions for the lens and source properties and taking magnification bias and image configuration detectability into account. We find that upcoming wide-field synoptic surveys should detect several thousand lensed quasars. In particular, the LSST should find 8000 lensed quasars, 3000 of which will have well-measured time delays, and also ~130 lensed supernovae, which is compared with ~15 lensed supernovae predicted to be found by the JDEM. We predict the quad fraction to be ~15% for the lensed quasars and ~30% for the lensed supernovae. Generating a mock catalogue of around 1500 well-observed double-image lenses, we compute the available precision on the Hubble constant and the dark energy equation parameters for the time delay distance experiment (assuming priors from Planck): the predicted marginalised 68% confidence intervals are sigma(w_0)=0.15, sigma(w_a)=0.41, and sigma(h)=0.017. While this is encouraging in the sense that these uncertainties are only 50% larger than those predicted for a space-based type-Ia supernova sample, we show how the dark energy figure of merit degrades with decreasing knowledge of the the lens mass distribution. (Abridged)



قيم البحث

اقرأ أيضاً

We present new HST WFPC3 imaging of four gravitationally lensed quasars: MG 0414+0534; RXJ 0911+0551; B 1422+231; WFI J2026-4536. In three of these systems we detect wavelength-dependent microlensing, which we use to place constraints on the sizes an d temperature profiles of the accretion discs in each quasar. Accretion disc radius is assumed to vary with wavelength according to the power-law relationship $rpropto lambda^p$, equivalent to a radial temperature profile of $Tpropto r^{-1/p}$. The goal of this work is to search for deviations from standard thin disc theory, which predicts that radius goes as wavelength to the power $p=4/3$. We find a wide range of power-law indices, from $p=1.4^{+0.5}_{-0.4}$ in B 1422+231 to $p=2.3^{+0.5}_{-0.4}$ in WFI J2026-4536. The measured value of $p$ appears to correlate with the strength of the wavelength-dependent microlensing. We explore this issue with mock simulations using a fixed accretion disc with $p=1.5$, and find that cases where wavelength-dependent microlensing is small tend to under-estimate the value of $p$. This casts doubt on previous ensemble single-epoch measurements which have favoured low values using samples of lensed quasars that display only moderate chromatic effects. Using only our systems with strong chromatic microlensing we prefer $p>4/3$, corresponding to shallower temperature profiles than expected from standard thin disc theory.
In the upcoming decade cadenced wide-field imaging surveys will increase the number of identified $z<0.3$ Type~Ia supernovae (SNe~Ia) from the hundreds to the hundreds of thousands. The increase in the number density and solid-angle coverage of SNe~I a, in parallel with improvements in the standardization of their absolute magnitudes, now make them competitive probes of the growth of structure and hence of gravity. The peculiar velocity power spectrum is sensitive to the growth index $gamma$, which captures the effect of gravity on the linear growth of structure through the relation $f=Omega_M^gamma$. We present the first projections for the precision in $gamma$ for a range of realistic SN peculiar-velocity survey scenarios. In the next decade the peculiar velocities of SNe~Ia in the local $z<0.3$ Universe will provide a measure of $gamma$ to $pm 0.01$ precision that can definitively distinguish between General Relativity and leading models of alternative gravity.
Recently, there have been two landmark discoveries of gravitationally lensed supernovae: the first multiply-imaged SN, Refsdal, and the first Type Ia SN resolved into multiple images, SN iPTF16geu. Fitting the multiple light curves of such objects ca n deliver measurements of the lensing time delays, which are the difference in arrival times for the separate images. These measurements provide precise tests of lens models or constraints on the Hubble constant and other cosmological parameters that are independent of the local distance ladder. Over the next decade, accurate time delay measurements will be needed for the tens to hundreds of lensed SNe to be found by wide-field time-domain surveys such as LSST and WFIRST. We have developed an open source software package for simulations and time delay measurements of multiply-imaged SNe, including an improved characterization of the uncertainty caused by microlensing. We describe simulations using the package that suggest a before-peak detection of the leading image enables a more accurate and precise time delay measurement (by ~1 and ~2 days, respectively), when compared to an after-peak detection. We also conclude that fitting the effects of microlensing without an accurate prior often leads to biases in the time delay measurement and over-fitting to the data, but that employing a Gaussian Process Regression (GPR) technique is sufficient for determining the uncertainty due to microlensing.
We report observations of three gravitationally lensed supernovae (SNe) in the Cluster Lensing And Supernova survey with Hubble (CLASH) Multi-Cycle Treasury program. These objects, SN CLO12Car (z = 1.28), SN CLN12Did (z = 0.85), and SN CLA11Tib (z = 1.14), are located behind three different clusters, MACSJ1720.2+3536 (z = 0.391), RXJ1532.9+3021 (z = 0.345), and Abell 383 (z = 0.187), respectively. Each SN was detected in Hubble Space Telescope (HST) optical and infrared images. Based on photometric classification, we find that SNe CLO12Car and CLN12Did are likely to be Type Ia supernovae (SNe Ia), while the classification of SN CLA11Tib is inconclusive. Using multi-color light-curve fits to determine a standardized SN Ia luminosity distance, we infer that SN CLO12Car was approximately 1.0 +/- 0.2 mag brighter than field SNe Ia at a similar redshift and ascribe this to gravitational lens magnification. Similarly, SN CLN12Did is approximately 0.2 +/- 0.2 mag brighter than field SNe Ia. We derive independent estimates of the predicted magnification from CLASH strong+weak lensing maps of the clusters: 0.83 +/- 0.16 mag for SN CLO12Car, 0.28 +/- 0.08 mag for SN CLN12Did, and 0.43 +/- 0.11 mag for SN CLA11Tib. The two SNe Ia provide a new test of the cluster lens model predictions: we find that the magnifications based on the SN Ia brightness and those predicted by the lens maps are consistent. Our results herald the promise of future observations of samples of cluster-lensed SNe Ia (from the ground or space) to help illuminate the dark-matter distribution in clusters of galaxies, through the direct determination of absolute magnifications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا