ترغب بنشر مسار تعليمي؟ اضغط هنا

An all-silica three-element wide-field corrector for GMT

85   0   0.0 ( 0 )
 نشر من قبل Will Saunders
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an alternative Corrector-ADC design for GMT. The design consists of just 3 silica lenses, of maximum size 1.51m, and includes only a single low-precision asphere for 20 field-of-view, and none for 10. The polychromatic (360nm-1300nm) image quality is d80<0.043 at zenith and d80<0.20 for ZD<60 degrees. The monochromatic image quality is d80<0.1 everywhere, and typically ~0.05. The ADC action is achieved by tilt and translation of all three lenses; L1 and L2 via simple slide mechanisms each using a single encoded actuator, and L3 via a novel tracker-ball support and three actuators. There is also a small motion of M2 via the hexapod, automatically generated by the AGWS system. The ADC action causes a small non-telecentricity, but this is much less than the unavoidable chromatic effects shared with the baseline design. The ADC action also changes the distortion pattern of the telescope, but this can be used positively, to reduce the maximum image motion due to differential refraction by a factor of three. The transmission is superb at all wavelengths, because of the reduced number of air/glass surfaces, and the use only of fused silica.



قيم البحث

اقرأ أيضاً

Wide-Field Corrector designs are presented for the Blanco and Mayall telescopes, the CFHT and the AAT. The designs are Terezibh-style, with 5 or 6 lenses, and modest negative optical power. They have 2.2-3 degree fields of view, with curved and telec entric focal surfaces suitable for fiber spectroscopy. Some variants also allow wide-field imaging, by changing the last WFC element. Apart from the adaptation of the Terebizh design for spectroscopy, the key feature is a new concept for a Compensating Lateral Atmospheric Dispersion Corrector, with two of the lenses being movable laterally by small amounts. This provides excellent atmospheric dispersion correction, without any additional surfaces or absorption. A novel and simple mechanism for providing the required lens motions is proposed, which requires just 3 linear actuators for each of the two moving lenses.
The Murchison Wide-field Array (MWA) is a low frequency radio telescope, currently under construction, intended to search for the spectral signature of the epoch of re-ionisation (EOR) and to probe the structure of the solar corona. Sited in Western Australia, the full MWA will comprise 8192 dipoles grouped into 512 tiles, and be capable of imaging the sky south of 40 degree declination, from 80 MHz to 300 MHz with an instantaneous field of view that is tens of degrees wide and a resolution of a few arcminutes. A 32-station prototype of the MWA has been recently commissioned and a set of observations taken that exercise the whole acquisition and processing pipeline. We present Stokes I, Q, and U images from two ~4 hour integrations of a field 20 degrees wide centered on Pictoris A. These images demonstrate the capacity and stability of a real-time calibration and imaging technique employing the weighted addition of warped snapshots to counter extreme wide field imaging distortions.
The science goals for ground-based large-area surveys, such as the Dark Energy Survey, Pan-STARRS, and the Large Synoptic Survey Telescope, require calibration of broadband photometry that is stable in time and uniform over the sky to precisions of a per cent or better. This performance will need to be achieved with data taken over the course of many years, and often in less than ideal conditions. This paper describes a strategy to achieve precise internal calibration of imaging survey data taken in less than photometric conditions, and reports results of an observational study of the techniques needed to implement this strategy. We find that images of celestial fields used in this case study with stellar densities of order one per arcmin-squared and taken through cloudless skies can be calibrated with relative precision of 0.5 per cent (reproducibility). We report measurements of spatial structure functions of cloud absorption observed over a range of atmospheric conditions, and find it possible to achieve photometric measurements that are reproducible to 1 per cent in images that were taken through cloud layers that transmit as little as 25 per cent of the incident optical flux (1.5 magnitudes of extinction). We find, however, that photometric precision below 1 per cent is impeded by the thinnest detectable cloud layers. We comment on implications of these results for the observing strategies of future surveys.
Here we review the current conceptual optical mechanical design of GMagAO-X --the extreme AO (ExAO) system for the Giant Magellan Telescope (GMT). The GMagAO-X tweeter deformable mirror (DM) design is novel in that it uses an optically distributed se t of pupils that allows seven commercially available 3000 actuator BMC DMs to work in parallel to effectively create an ELT-scale ExAO tweeter DM --with all parts commercially available today. The GMagAO-X parallel DM tweeter will have 21,000 actuators to be used at ~2kHz update speeds enabling high-contrast science at ~5 mas separations in the visible and NIR of the spectrum (0.6-1.7 microns). To prove our concept for GMagAO-X several items must be lab tested: the optical/mechanical concept for the parallel DM; phasing of the GMT pupil; and solving the GMTs isolated island effect will all be demonstrated on an optical testbed at the University of Arizona. Here we outline the current design for this GMT High-Contrast Testbed that has been proposed jointly by GMTO and the University of Arizona which leverages the existing, operational, MagAO-X ExAO instrument to verify our approach to phase sensing and AO control for high-contrast GMT NGS science. We will also highlight how GMagAO-X can be mounted on the auxiliary port of the GMT and so remain gravity invariant. Since it is gravity invariant GMagAO-X can utilize a floating optical table to minimize flexure and NCP vibrations.
A revolution in radio receiving technology is underway with the development of densely packed phased arrays for radio astronomy. This technology can provide an exceptionally large field of view, while at the same time sampling the sky with high angul ar resolution. Such an instrument, with a field of view of over 100 square degrees, is ideal for performing fast, all-sky, surveys, such as the intensity mapping experiment to measure the signature of Baryonic Acoustic Oscillations in the HI mass distribution at cosmological redshifts. The SKA, built with this technology, will be able to do a billion galaxy survey. I will present a very brief introduction to radio interferometry, as well as an overview of the Square Kilometre Array project. This will be followed by a description of the EMBRACE prototype and a discussion of results and future plans.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا