ﻻ يوجد ملخص باللغة العربية
In this contribution we extend our unquenched computation of the Landau gauge gluon and ghost propagators in lattice QCD at non-zero temperature. The study was aimed at providing input for investigations employing continuum functional methods. We show data which correspond to pion mass values between 300 and 500 MeV and are obtained for a lattice size 32**3 x 12. The longitudinal and transversal components of the gluon propagator turn out to change smoothly through the crossover region, while the ghost propagator exhibits only a very weak temperature dependence. For a pion mass of around 400 MeV and the intermediate temperature value of approx. 240 MeV we compare our results with additional data obtained on a lattice with smaller Euclidean time extent N_t = 8, 10 and find a reasonable scaling behavior.
We study the ultraviolet behaviour of the ghost and gluon propagators in quenched QCD using lattice simulations. Extrapolation of the lattice data towards the continuum allows to use perturbation theory to extract $Lambda_{text{QCD}}$ - the fundament
Starting from the lattice Landau gauge gluon and ghost propagator data we use a sequence of Pade approximants, identify the poles and zeros for each approximant and map them into the analytic structure of the propagators. For the Landau gauge gluon p
We study the Landau gauge gluon and ghost propagators of SU(3) gauge theory, employing the logarithmic definition for the lattice gluon fields and implementing the corresponding form of the Faddeev-Popov matrix. This is necessary in order to consiste
We study the gluon and ghost propagators of SU(2) lattice Landau gauge theory and find their low-momentum behavior being sensitive to the lowest non-trivial eigenvalue (lambda_1) of the Faddeev-Popov operator. If the gauge-fixing favors Gribov copies
In lattice QCD the computation of one-particle irreducible (1PI) Greens functions with a large number (> 2) of legs is a challenging task. Besides tuning the lattice spacing and volume to reduce finite size effects, the problems associated with the e