ترغب بنشر مسار تعليمي؟ اضغط هنا

Landau gauge gluon vertices from Lattice QCD

184   0   0.0 ( 0 )
 نشر من قبل Paulo Silva
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In lattice QCD the computation of one-particle irreducible (1PI) Greens functions with a large number (> 2) of legs is a challenging task. Besides tuning the lattice spacing and volume to reduce finite size effects, the problems associated with the estimation of higher order moments via Monte Carlo methods and the extraction of 1PI from complete Greens functions are limitations of the method. Herein, we address these problems revisiting the calculation of the three gluon 1PI Greens function.

قيم البحث

اقرأ أيضاً

We report on preliminary results for the triple-gluon and the quark-gluon vertex in Landau gauge. Our results are based on two-flavor and quenched lattice QCD calculations for different quark masses, lattice spacings and volumes. We discuss the momen tum dependence of some of the verticess form factors and the deviations from the tree-level form.
We address the interpretation of the Landau gauge gluon propagator at finite temperature as a massive type bosonic propagator. Using pure gauge SU(3) lattice simulations at a fixed lattice volume $sim(6.5fm)^3$, we compute the electric and magnetic f orm factors, extract a gluon mass from Yukawa-like fits, and study its temperature dependence. This is relevant both for the Debye screening at high temperature $T$ and for confinement at low $T$.
Starting from the lattice Landau gauge gluon and ghost propagator data we use a sequence of Pade approximants, identify the poles and zeros for each approximant and map them into the analytic structure of the propagators. For the Landau gauge gluon p ropagator the Pade analysis identifies a pair of complex conjugate poles and a branch cut along the negative real axis of the Euclidean $p^2$ momenta. For the Landau gauge ghost propagator the Pade analysis shows a single pole at $p^2 = 0$ and a branch cut also along the negative real axis of the Euclidean $p^2$ momenta. The method gives precise estimates for the gluon complex poles, that agree well with other estimates found in the literature. For the branch cut the Pade analysis gives, at least, a rough estimate of the corresponding branch point.
The two point gluon and ghost correlation functions and the three gluon vertex are investigated, in the Landau gauge, using lattice simulations. For the two point functions, we discuss the approach to the continuum limit looking at the dependence on the lattice spacing and volume. The analytical structure of the propagators is also investigated by computing the corresponding spectral functions using an implementation of the Tikhonov regularisation to solve the integral equation. For the three point function we report results when the momentum of one of the gluon lines is set to zero and discuss its implications.
In this contribution we extend our unquenched computation of the Landau gauge gluon and ghost propagators in lattice QCD at non-zero temperature. The study was aimed at providing input for investigations employing continuum functional methods. We sho w data which correspond to pion mass values between 300 and 500 MeV and are obtained for a lattice size 32**3 x 12. The longitudinal and transversal components of the gluon propagator turn out to change smoothly through the crossover region, while the ghost propagator exhibits only a very weak temperature dependence. For a pion mass of around 400 MeV and the intermediate temperature value of approx. 240 MeV we compare our results with additional data obtained on a lattice with smaller Euclidean time extent N_t = 8, 10 and find a reasonable scaling behavior.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا