ﻻ يوجد ملخص باللغة العربية
We study the gluon and ghost propagators of SU(2) lattice Landau gauge theory and find their low-momentum behavior being sensitive to the lowest non-trivial eigenvalue (lambda_1) of the Faddeev-Popov operator. If the gauge-fixing favors Gribov copies with small (large) values for lambda_1 both the ghost dressing function and the gluon propagator get enhanced (suppressed) at low momentum. For larger momenta no dependence on Gribov copies is seen. We compare our lattice data to the corresponding (decoupling) solutions from the DSE/FRGE study of Fischer, Maas and Pawlowski [Annals Phys. 324 (2009) 2408] and find qualitatively good agreement.
Starting from the lattice Landau gauge gluon and ghost propagator data we use a sequence of Pade approximants, identify the poles and zeros for each approximant and map them into the analytic structure of the propagators. For the Landau gauge gluon p
We study the ultraviolet behaviour of the ghost and gluon propagators in quenched QCD using lattice simulations. Extrapolation of the lattice data towards the continuum allows to use perturbation theory to extract $Lambda_{text{QCD}}$ - the fundament
In this contribution we extend our unquenched computation of the Landau gauge gluon and ghost propagators in lattice QCD at non-zero temperature. The study was aimed at providing input for investigations employing continuum functional methods. We sho
We study the Landau gauge gluon and ghost propagators of SU(3) gauge theory, employing the logarithmic definition for the lattice gluon fields and implementing the corresponding form of the Faddeev-Popov matrix. This is necessary in order to consiste
The subtraction of hypercubic lattice corrections, calculated at 1-loop order in lattice perturbation theory (LPT), is common practice, e.g., for determinations of renormalization constants in lattice hadron physics. Providing such corrections beyond