ترغب بنشر مسار تعليمي؟ اضغط هنا

Planning the electron traffic in semiconductor networks: A mesoscopic analog of the Braess paradox encountered in road networks

70   0   0.0 ( 0 )
 نشر من قبل Serge Huant
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

By combining quantum simulations of electron transport and scanning-gate microscopy, we have shown that the current transmitted through a semiconductor two-path rectangular network in the ballistic and coherent regimes of transport can be paradoxically degraded by adding a third path to the network. This is analogous to the Braess paradox occurring in classical networks. Simulations reported here enlighten the role played by congestion in the network.

قيم البحث

اقرأ أيضاً

212 - M. G. Pala , S. Baltazar , P. Liu 2011
We present evidence for a counter-intuitive behavior of semiconductor mesoscopic networks that is the analog of the Braess paradox encountered in classical networks. A numerical simulation of quantum transport in a two-branch mesoscopic network revea ls that adding a third branch can paradoxically induce transport inefficiency that manifests itself in a sizable conductance drop of the network. A scanning-probe experiment using a biased tip to modulate the transmission of one branch in the network reveals the occurrence of this paradox by mapping the conductance variation as a function of the tip voltage and position.
90 - Ken K. W. Ma , Kun Yang 2021
The black hole information paradox has been hotly debated for the last few decades, without full resolution. This makes it desirable to find analogs of this paradox in simple and experimentally accessible systems, whose resolutions may shed light on this long-standing and fundamental problem. Here we identify and resolve an apparent information paradox in a quantum Hall interface between the Halperin-331 and Pfaffian states. Information carried by pseudospin degree of freedom of the Abelian 331 quasiparticles gets scrambled when they cross the interface to enter non-Abelian Pfaffian state, and becomes inaccessible to local measurements; in this sense the Pfaffian region is an analog of black hole interior while the interface plays a role similar to its horizon. We demonstrate that the lost information gets recovered once the black hole evaporates and the quasiparticles return to the 331 region, albeit in a highly entangled form. Such recovery is quantified by the Page curve of the entropy carried by these quasiparticles, which are analogs of Hawking radiation.
We measure the rectified dc currents resulting when a 3-terminal semiconductor device with gate-dependent conductance is driven with an ac gate voltage. The rectified currents exhibit surprisingly complex behaviour as the dc source-drain bias voltage , the dc gate voltage and the amplitude of the ac gate voltage are varied. We obtain good agreement between our data and a model based on simple assumptions about the stray impedances on the sample chip, over a wide frequency range. This method is applicable to many types of experiment which involve ac gating of a non-linear device, and where an undesireable rectified contribution to the measured signal is present. Finally, we evaluate the small rectified currents flowing in tunable-barrier electron pumps operated in the pinched-off regime. These currents are at most $10^{-12}$ of the pumped current for a pump current of 100 pA. This result is encouraging for the development of tunable-barrier pumps as metrological current standards.
We report on magnetoconductance measurements of metallic networks of various sizes ranging from 10 to $10^{6}$ plaquettes, with anisotropic aspect ratio. Both Altshuler-Aronov-Spivak (AAS) $h/2e$ periodic oscillations and Aharonov-Bohm (AB) $h/e$ per iodic oscillations are observed for all networks. For large samples, the amplitude of both oscillations results from the incoherent superposition of contributions of phase coherent regions. When the transverse size becomes smaller than the phase coherent length $L_phi$, one enters a new regime which is phase coherent (mesoscopic) along one direction and macroscopic along the other, leading to a new size dependence of the quantum oscillations.
Using the tight-binding model and the generalized Greens function formalism, the effect of quantum interference on the electron transport through the benzene molecule in a semiconductor/benzene/semiconductor junction is numerically investigated. We s how how the quantum interference sources, different contact positions and local gate, can control the transmission characteristics of the electrode/molecule/electrode junction. We also study the occurrence of anti-resonant states in the transmission probability function using a simple graphical scheme (introduced in Ref.[Phys. Chem. Chem. Phys, 2011, 13, 1431]) for different geometries of the contacts between the benzene molecule and semiconductor(silicon and titanium dioxide) electrodes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا