ترغب بنشر مسار تعليمي؟ اضغط هنا

Transport inefficiency in branched-out mesoscopic networks: An analog of the Braess paradox

213   0   0.0 ( 0 )
 نشر من قبل Serge Huant
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present evidence for a counter-intuitive behavior of semiconductor mesoscopic networks that is the analog of the Braess paradox encountered in classical networks. A numerical simulation of quantum transport in a two-branch mesoscopic network reveals that adding a third branch can paradoxically induce transport inefficiency that manifests itself in a sizable conductance drop of the network. A scanning-probe experiment using a biased tip to modulate the transmission of one branch in the network reveals the occurrence of this paradox by mapping the conductance variation as a function of the tip voltage and position.

قيم البحث

اقرأ أيضاً

71 - S. Huant , S. Baltazar , P. Liu 2013
By combining quantum simulations of electron transport and scanning-gate microscopy, we have shown that the current transmitted through a semiconductor two-path rectangular network in the ballistic and coherent regimes of transport can be paradoxical ly degraded by adding a third path to the network. This is analogous to the Braess paradox occurring in classical networks. Simulations reported here enlighten the role played by congestion in the network.
The Braess paradox encountered in classical networks is a counterintuitive phenomenon when the flow in a road network can be impeded by adding a new road or, more generally, the overall net performance can degrade after addition of an extra available choice. In this work, we discuss the possibility of a similar effect in a phase-coherent quantum transport and demonstrate it by example of a simple Y-shaped metallic fork. To reveal the Braess-like partial suppression of the charge flow in such device, it is proposed to transfer two outgoing arms into a superconducting state. We show that the differential conductance-vs-voltage spectrum of the hybrid fork structure varies considerably when the extra link between the two superconducting leads is added and it can serve as an indicator of quantum correlations which manifest themselves in the quantum Braess paradox.
90 - Ken K. W. Ma , Kun Yang 2021
The black hole information paradox has been hotly debated for the last few decades, without full resolution. This makes it desirable to find analogs of this paradox in simple and experimentally accessible systems, whose resolutions may shed light on this long-standing and fundamental problem. Here we identify and resolve an apparent information paradox in a quantum Hall interface between the Halperin-331 and Pfaffian states. Information carried by pseudospin degree of freedom of the Abelian 331 quasiparticles gets scrambled when they cross the interface to enter non-Abelian Pfaffian state, and becomes inaccessible to local measurements; in this sense the Pfaffian region is an analog of black hole interior while the interface plays a role similar to its horizon. We demonstrate that the lost information gets recovered once the black hole evaporates and the quasiparticles return to the 331 region, albeit in a highly entangled form. Such recovery is quantified by the Page curve of the entropy carried by these quasiparticles, which are analogs of Hawking radiation.
We study the non-equilibrium regime of the Kondo effect in a quantum dot laterally coupled to a narrow wire. We observe a split Kondo resonance when a finite bias voltage is imposed across the wire. The splitting is attributed to the creation of a do uble-step Fermi distribution function in the wire. Kondo correlations are strongly suppressed when the voltage across the wire exceeds the Kondo temperature. A perpendicular magnetic field enables us to selectively control the coupling between the dot and the two Fermi seas in the wire. Already at fields of order 0.1 T only the Kondo resonance associated with the strongly coupled reservoir survives.
Using high quality undoped GaAs/AlGaAs heterostructures with optically patterned insulation between two layers of gates, it is possible to investigate very low density mesoscopic regions where the number of impurities is well quantified. Signature ap pearances of the scattering length scale arise in confined two dimensional regions, where the zero-bias anomaly (ZBA) is also observed. These results explicitly outline the molecular beam epitaxy growth parameters necessary to obtain ultra low density large two dimensional regions as well as clean reproducible mesoscopic devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا