ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Non-Barking Dogs

51   0   0.0 ( 0 )
 نشر من قبل Sara Walker
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum weak measurements with states both pre- and postselected offer a window into a hitherto neglected sector of quantum mechanics. A class of such systems involves time dependent evolution with transitions possible. In this paper we explore two very simple systems in this class. The first is a toy model representing the decay of an excited atom. The second is the tunneling of a particle through a barrier. The postselection criteria are chosen as follows: at the final time, the atom remains in its initial excited state for the first example and the particle remains behind the barrier for the second. We then ask what weak values are predicted in the physical environment of the atom (to which no net energy has been transferred) and in the region beyond the barrier (to which the particle has not tunneled). Previous work suggests that very large weak values might arise in these regions for long durations between pre- and postselection times. Our calculations reveal some distinct differences between the two model systems.

قيم البحث

اقرأ أيضاً

50 - Alex E. Bernardini 2018
Phase-space features of the Wigner flow for an anharmonic quantum system driven by the harmonic oscillator potential modified by the addition of an inverse square (one-dimension Coulomb-like) contribution are analytically described in terms of Wigner functions and Wigner currents. Reporting about three correlated continuity equations which quantify the flux of quantum information in the phase-space, the non-classicality profile of such an anharmonic system can be consistently obtained in terms of the fluxes of {em probability}, {em purity} and {em von Neumann-like entropy}. Considering that quantum fluctuations can be identified from distortions over the classical regime, they can be quantified through the above-mentioned information fluxes whenever some {em classically bounded} volume of the phase-space is selected. Our results suggest that the Wigner flow approach works as a probe of quantumness and classicality for a large set of anharmonic quantum systems driven by quantum wells.
In this paper, we have constructed the Feynman path integral method for non-paraxial optics. This is done by using the mathematical analogy between a non-paraxial optical system and the generalized Schrodinger equation deformed by the existence a min imal measurable length. Using this analogy, we investigated the consequences of a minimal length in this optical system. This path integral has been used to obtain instanton solution for such a optical systems. Moreover, the Berry phase of this optical system has been investigated. These results may disclose a new way to use the path integral approach in optics. Furthermore, as such system with an intrinsic minimal length have been studied in quantum gravity, the ultra-focused optical pluses can be used as an optical analog of quantum gravity.
196 - Kevin Slagle 2021
We consider the hypothesis that quantum mechanics is not fundamental, but instead emerges from a theory with less computational power, such as classical mechanics. This hypothesis makes the prediction that quantum computers will not be capable of suf ficiently complex quantum computations. Utilizing this prediction, we outline a proposal to test for such a breakdown of quantum mechanics using near-term noisy intermediate-scale quantum (NISQ) computers. Our procedure involves simulating a non-Clifford random circuit, followed by its inverse, and then checking that the resulting state is the same as the initial state. We show that quantum mechanics predicts that the fidelity of this procedure decays exponentially with circuit depth (due to noise in NISQ computers). However, if quantum mechanics emerges from a theory with significantly less computational power, then we expect the fidelity to decay significantly more rapidly than the quantum mechanics prediction for sufficiently deep circuits, which is the experimental signature that we propose to search for. Useful experiments can be performed with 80 qubits and gate infidelity $10^{-3}$, while highly informative experiments should require only 1000 qubits and gate infidelity $10^{-5}$.
76 - F. Cannata 1998
General first- and higher-order intertwining relations between non-stationary one-dimensional Schrodinger operators are introduced. For the first-order case it is shown that the intertwining relations imply some hidden symmetry which in turn results in a $R$-separation of variables. The Fokker-Planck and diffusion equation are briefly considered. Second-order intertwining operators are also discussed within a general approach. However, due to its complicated structure only particular solutions are given in some detail.
Many scientists seeking to understand the quantum mechanics of measurement situations (Copenhagen quantum theory) agree on its overwhelmingly successful algorithms to predict the outcomes of laboratory measurements but disagree on what these algorith ms mean and how they are to be interpreted. Some of these problems are briefly described and resolutions suggested from the decoherent (or consistent) histories quantum mechanics of closed systems like the Universe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا