ﻻ يوجد ملخص باللغة العربية
General first- and higher-order intertwining relations between non-stationary one-dimensional Schrodinger operators are introduced. For the first-order case it is shown that the intertwining relations imply some hidden symmetry which in turn results in a $R$-separation of variables. The Fokker-Planck and diffusion equation are briefly considered. Second-order intertwining operators are also discussed within a general approach. However, due to its complicated structure only particular solutions are given in some detail.
Motivated by the long-time transport properties of quantum waves in weakly disordered media, the present work puts random Schrodinger operators into a new spectral perspective. Based on a stationary random version of a Floquet type fibration, we redu
Quantum constraints of the type Q psi = 0 can be straightforwardly implemented in cases where Q is a self-adjoint operator for which zero is an eigenvalue. In that case, the physical Hilbert space is obtained by projecting onto the kernel of Q, i.e.
We consider relativistic coherent states for a spin-0 charged particle that satisfy the next additional requirements: (i) the expected values of the standard coordinate and momentum operators are uniquely related to the real and imaginary parts of th
It is commonly known that the Fokker-Planck equation is exactly solvable only for some particular systems, usually with time-independent drift coefficients. To extend the class of solvable problems, we use the intertwining relations of SUSY Quantum M
For any variable number, a non-stationary Ruijsenaars function was recently introduced as a natural generalization of an explicitly known asymptotically free solution of the trigonometric Ruijsenaars model, and it was conjectured that this non-statio