ترغب بنشر مسار تعليمي؟ اضغط هنا

Testing non-classicality with exact Wigner currents for an anharmonic quantum system

51   0   0.0 ( 0 )
 نشر من قبل Alex Bernardini Dr.
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Phase-space features of the Wigner flow for an anharmonic quantum system driven by the harmonic oscillator potential modified by the addition of an inverse square (one-dimension Coulomb-like) contribution are analytically described in terms of Wigner functions and Wigner currents. Reporting about three correlated continuity equations which quantify the flux of quantum information in the phase-space, the non-classicality profile of such an anharmonic system can be consistently obtained in terms of the fluxes of {em probability}, {em purity} and {em von Neumann-like entropy}. Considering that quantum fluctuations can be identified from distortions over the classical regime, they can be quantified through the above-mentioned information fluxes whenever some {em classically bounded} volume of the phase-space is selected. Our results suggest that the Wigner flow approach works as a probe of quantumness and classicality for a large set of anharmonic quantum systems driven by quantum wells.

قيم البحث

اقرأ أيضاً

189 - Xi Kong , Mingjun Shi , Fazhan Shi 2012
Quantum mechanics provides a statistical description about nature, and thus would be incomplete if its statistical predictions could not be accounted for by some realistic models with hidden variables. There are, however, two powerful theorems agains t the hidden-variable theories showing that certain quantum features cannot be reproduced based on two rationale premises of locality, Bells theorem, and noncontextuality, due to Bell, Kochen and Specker (BKS). Noncontextuality is independent of nonlocality, and the contextuality manifests itself even in a single object. Here we report an experimental verification of quantum contextuality by a single spin-1 electron system at room temperature. Such a three-level system is indivisible and then we close the compatibility loophole which exists in the experiments performed on bipartite systems. Our results confirm the quantum contextuality to be the intrinsic property of single particles.
Quantum mechanics provides a statistical description about nature, and thus would be incomplete if its statistical predictions could not be accounted for some realistic models with hidden variables. There are, however, two powerful theorems against t he hidden-variable theories showing that certain quantum features cannot be reproduced based on two rationale premises of classicality, the Bell theorem, and noncontextuality, due to Bell, Kochen and Specker (BKS) . Tests of the Bell inequality and the BKS theorem are both of fundamental interests and of great significance . The Bell theorem has already been experimentally verified extensively on many different systems , while the quantum contextuality, which is independent of nonlocality and manifests itself even in a single object, is experimentally more demanding. Moreover, the contextuality has been shown to play a critical role to supply the `magic for quantum computation, making more extensive experimental verifications in potential systems for quantum computing even more stringent. Here we report an experimental verification of quantum contextuality on an individual atomic nuclear spin-1 system in solids under ambient condition. Such a three-level system is indivisible and thus the compatibility loophole, which exists in the experiments performed on bipartite systems, is closed. Our experimental results confirm that the quantum contextuality cannot be explained by nonlocal entanglement, revealing the fundamental quantumness other than locality/nonlocality within the intrinsic spin freedom of a concrete natural atomic solid-state system at room temperature.
It is commonly accepted that a deviation of the Wigner quasiprobability distribution of a quantum state from a proper statistical distribution signifies its nonclassicality. Following this ideology, we introduce the global indicator $mathcal{Q}_N$ fo r quantification of classicality-quantumness correspondence in the form of the functional on the orbit space $mathcal{O}[mathfrak{P}_N]$ of the $SU(N)$ group adjoint action on the state space $mathfrak{P}_N$ of an $N$-dimensional quantum system. The indicator $mathcal{Q}_{N}$ is defined as a relative volume of a subspace $mathcal{O}[mathfrak{P}^{(+)}_N] subset mathcal{O}[mathfrak{P}_N],,$ where the Wigner quasiprobability distribution is positive. An algebraic structure of $mathcal{O}[mathfrak{P}^{(+)}_N]$ is revealed and exemplified by a single qubit $(N=2)$ and single qutrit $(N=3)$. For the Hilbert-Schmidt ensemble of qutrits the dependence of the global indicator on the moduli parameter of the Wigner quasiprobability distribution has been found.
We investigate the implications of quantum Darwinism in a composite quantum system with interacting constituents exhibiting a decoherence-free subspace. We consider a two-qubit system coupled to an $N$-qubit environment via a dephasing interaction. F or excitation preserving interactions between the system qubits, an analytical expression for the dynamics is obtained. It demonstrates that part of the system Hilbert space redundantly proliferates its information to the environment, while the remaining subspace is decoupled and preserves clear non-classical signatures. For measurements performed on the system, we establish that a non-zero quantum discord is shared between the composite system and the environment, thus violating the conditions of strong Darwinism. However, due to the asymmetry of quantum discord, the information shared with the environment is completely classical for measurements performed on the environment. Our results imply a dichotomy between objectivity and classicality that emerges when considering composite systems.
We investigate signatures of non-classicality in quantum states, in particular, those involved in the DQC1 model of mixed-state quantum computation [Phys. Rev. Lett. 81, 5672 (1998)]. To do so, we consider two known non-classicality criteria. The fir st quantifies disturbance of a quantum state under locally noneffective unitary operations (LNU), which are local unitaries acting invariantly on a subsystem. The second quantifies measurement induced disturbance (MID) in the eigenbasis of the reduced density matrices. We study the role of both figures of non-classicality in the exponential speedup of the DQC1 model and compare them vis-a-vis the interpretation provided in terms of quantum discord. In particular, we prove that a non-zero quantum discord implies a non-zero shift under LNUs. We also use the MID measure to study the locking of classical correlations [Phys. Rev. Lett. 92, 067902 (2004)] using two mutually unbiased bases (MUB). We find the MID measure to exactly correspond to the number of locked bits of correlation. For three or more MUBs, it predicts the possibility of superior locking effects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا