ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultrafast surface carrier dynamics in the topological insulator Bi2Te3

94   0   0.0 ( 0 )
 نشر من قبل Marino Marsi
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the ultrafast evolution of the surface electronic structure of the topological insulator Bi$_2$Te$_3$ following a femtosecond laser excitation. Using time and angle resolved photoelectron spectroscopy, we provide a direct real-time visualisation of the transient carrier population of both the surface states and the bulk conduction band. We find that the thermalization of the surface states is initially determined by interband scattering from the bulk conduction band, lasting for about 0.5 ps; subsequently, few ps are necessary for the Dirac cone non-equilibrium electrons to recover a Fermi-Dirac distribution, while their relaxation extends over more than 10 ps. The surface sensitivity of our measurements makes it possible to estimate the range of the bulk-surface interband scattering channel, indicating that the process is effective over a distance of 5 nm or less. This establishes a correlation between the nanoscale thickness of the bulk charge reservoir and the evolution of the ultrafast carrier dynamics in the surface Dirac cone.

قيم البحث

اقرأ أيضاً

398 - J. Qi , X. Chen , W. Yu 2010
Ultrafast time-resolved differential reflectivity of Bi2Se3 crystals is studied using optical pump-probe spectroscopy. Three distinct relaxation processes are found to contribute to the initial transient reflectivity changes. The deduced relaxation t imescale and the sign of the reflectivity change suggest that electron-phonon interactions and defect-induced charge trapping are the underlying mechanisms for the three processes. After the crystal is exposed to air, the relative strength of these processes is altered and becomes strongly dependent on the excitation photon energy.
We characterize the topological insulator Bi$_2$Se$_3$ using time- and angle- resolved photoemission spectroscopy. By employing two-photon photoemission, a complete picture of the unoccupied electronic structure from the Fermi level up to the vacuum level is obtained. We demonstrate that the unoccupied states host a second, Dirac surface state which can be resonantly excited by 1.5 eV photons. We then study the ultrafast relaxation processes following optical excitation. We find that they culminate in a persistent non-equilibrium population of the first Dirac surface state, which is maintained by a meta-stable population of the bulk conduction band. Finally, we perform a temperature-dependent study of the electron-phonon scattering processes in the conduction band, and find the unexpected result that their rates decrease with increasing sample temperature. We develop a model of phonon emission and absorption from a population of electrons, and show that this counter-intuitive trend is the natural consequence of fundamental electron-phonon scattering processes. This analysis serves as an important reminder that the decay rates extracted by time-resolved photoemission are not in general equal to single electron scattering rates, but include contributions from filling and emptying processes from a continuum of states.
Trigonal tellurium (Te) is a chiral semiconductor that lacks both mirror and inversion symmetries, resulting in complex band structures with Weyl crossings and unique spin textures. Detailed time-resolved polarized reflectance spectroscopy is used to investigate its band structure and carrier dynamics. The polarized transient spectra reveal optical transitions between the uppermost spin-split H4 and H5 and the degenerate H6 valence bands (VB) and the lowest degenerate H6 conduction band (CB) as well as a higher energy transition at the L-point. Surprisingly, the degeneracy of the H6 CB (a proposed Weyl node) is lifted and the spin-split VB gap is reduced upon photoexcitation before relaxing to equilibrium as the carriers decay. Using ab initio density functional theory (DFT) calculations we conclude that the dynamic band structure is caused by a photoinduced shear strain in the Te film that breaks the screw symmetry of the crystal. The band-edge anisotropy is also reflected in the hot carrier decay rate, which is a factor of two slower along c-axis than perpendicular to it. The majority of photoexcited carriers near the band-edge are seen to recombine within 30 ps while higher lying transitions observed near 1.2 eV appear to have substantially longer lifetimes, potentially due to contributions of intervalley processes in the recombination rate. These new findings shed light on the strong correlation between photoinduced carriers and electronic structure in anisotropic crystals, which opens a potential pathway for designing novel Te-based devices that take advantage of the topological structures as well as strong spin-related properties.
115 - L. X. Xu , Y. H. Mao , H. Y. Wang 2019
Magnetic topological quantum materials (TQMs) provide a fertile ground for the emergence of fascinating topological magneto-electric effects. Recently, the discovery of intrinsic antiferromagnetic (AFM) topological insulator MnBi2Te4 that could reali ze quantized anomalous Hall effect and axion insulator phase ignited intensive study on this family of TQM compounds. Here, we investigated the AFM compound MnBi4Te7 where Bi2Te3 and MnBi2Te4 layers alternate to form a superlattice. Using spatial- and angle-resolved photoemission spectroscopy, we identified ubiquitous (albeit termination dependent) topological electronic structures from both Bi2Te3 and MnBi2Te4 terminations. Unexpectedly, while the bulk bands show strong temperature dependence correlated with the AFM transition, the topological surface states show little temperature dependence and remain gapless across the AFM transition. The detailed electronic structure of MnBi4Te7 and its temperature evolution, together with the results of its sister compound MnBi2Te4, will not only help understand the exotic properties of this family of magnetic TQMs, but also guide the design for possible applications.
Topological insulators with their topological protected surface states are highly promising quantum materials. In this article the micro-flakes of single-crystalline topological insulators Bi2Te3 and Sb2Te3 are explored through physical parameter mea surement at low temperatures and thereby the charge carrier dynamics are investigated at 5K to study the various optical transitions related to these surface states. The magnetoresistance is experimentally investigated at temperatures of 5K and 100K for a field range of 1Tesla. The occurrence of the weak anti-localization effect predicts the presence of topologically protected surface states in the systems. Further, the ultrafast femtosecond transient reflectance spectroscopy is performed at different temperatures, varying from a room temperature (300K) to a low temperature of 5K, to find the TSS related transitions at low temperatures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا