ﻻ يوجد ملخص باللغة العربية
Oscillation probability calculations are becoming increasingly CPU intensive in modern neutrino oscillation analyses. The independency of reweighting individual events in a Monte Carlo sample lends itself to parallel implementation on a Graphics Processing Unit. The library Prob3++ was ported to the GPU using the CUDA C API, allowing for large scale parallelized calculations of neutrino oscillation probabilities through matter of constant density, decreasing the execution time by a factor of 75, when compared to performance on a single CPU.
Signal estimation in the presence of background noise is a common problem in several scientific disciplines. An On/Off measurement is performed when the background itself is not known, being estimated from a background control sample. The frequentist
This paper discusses a parallelized event reconstruction of the COMET Phase-I experiment. The experiment aims to discover charged lepton flavor violation by observing 104.97 MeV electrons from neutrinoless muon-to-electron conversion in muonic atoms.
There is a growing use of neural network classifiers as unbinned, high-dimensional (and variable-dimensional) reweighting functions. To date, the focus has been on marginal reweighting, where a subset of features are used for reweighting while all ot
We have studied the distribution of traffic flow $q$ for the Nagel-Schreckenberg model by computer simulations. We applied a large-deviation approach, which allowed us to obtain the distribution $P(q)$ over more than one hundred decades in probabilit
In offshore engineering design, nonlinear wave models are often used to propagate stochastic waves from an input boundary to the location of an offshore structure. Each wave realization is typically characterized by a high-dimensional input time seri