ﻻ يوجد ملخص باللغة العربية
In offshore engineering design, nonlinear wave models are often used to propagate stochastic waves from an input boundary to the location of an offshore structure. Each wave realization is typically characterized by a high-dimensional input time series, and a reliable determination of the extreme events is associated with substantial computational effort. As the sea depth decreases, extreme events become more difficult to evaluate. We here construct a low-dimensional characterization of the candidate input time series to circumvent the search for extreme wave events in a high-dimensional input probability space. Each wave input is represented by a unique low-dimensional set of parameters for which standard surrogate approximations, such as Gaussian processes, can estimate the short-term exceedance probability efficiently and accurately. We demonstrate the advantages of the new approach with a simple shallow-water wave model based on the Korteweg-de Vries equation for which we can provide an accurate reference solution based on the simple Monte Carlo method. We furthermore apply the method to a fully nonlinear wave model for wave propagation over a sloping seabed. The results demonstrate that the Gaussian process can learn accurately the tail of the heavy-tailed distribution of the maximum wave crest elevation based on only $1.7%$ of the required Monte Carlo evaluations.
In nuclear engineering, modeling and simulations (M&Ss) are widely applied to support risk-informed safety analysis. Since nuclear safety analysis has important implications, a convincing validation process is needed to assess simulation adequacy, i.
Projections of extreme sea levels (ESLs) are critical for managing coastal risks, but are made complicated by deep uncertainties. One key uncertainty is the choice of model structure used to estimate coastal hazards. Differences in model structural c
Signal estimation in the presence of background noise is a common problem in several scientific disciplines. An On/Off measurement is performed when the background itself is not known, being estimated from a background control sample. The frequentist
Oscillation probability calculations are becoming increasingly CPU intensive in modern neutrino oscillation analyses. The independency of reweighting individual events in a Monte Carlo sample lends itself to parallel implementation on a Graphics Proc
We provide a method to correct the observed azimuthal anisotropy in heavy-ion collisions for the event plane resolution in a wide centrality bin. This new procedure is especially useful for rare particles, such as Omega baryons and J/psi mesons, whic