ترغب بنشر مسار تعليمي؟ اضغط هنا

GPU-Accelerated Event Reconstruction for the COMET Phase-I Experiment

78   0   0.0 ( 0 )
 نشر من قبل Beomki Yeo
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper discusses a parallelized event reconstruction of the COMET Phase-I experiment. The experiment aims to discover charged lepton flavor violation by observing 104.97 MeV electrons from neutrinoless muon-to-electron conversion in muonic atoms. The event reconstruction of electrons with multiple helix turns is a challenging problem because hit-to-turn classification requires a high computation cost. The introduced algorithm finds an optimal seed of position and momentum for each turn partition by investigating the residual sum of squares based on distance-of-closest-approach (DCA) between hits and a track extrapolated from the seed. Hits with DCA less than a cutoff value are classified for the turn represented by the seed. The classification performance was optimized by tuning the cutoff value and refining the set of classified hits. The workload was parallelized over the seeds and the hits by defining two GPU kernels, which record track parameters extrapolated from the seeds and finds the DCAs of hits, respectively. A reasonable efficiency and momentum resolution was obtained for a wide momentum region which covers both signal and background electrons. The event reconstruction results from the CPU and GPU were identical to each other. The benchmarked GPUs had an order of magnitude of speedup over a CPU with 16 cores while the exact speed gains varied depending on their architectures.



قيم البحث

اقرأ أيضاً

We present a fast GPU implementation of the image reconstruction routine, for a novel two strip PET detector that relies solely on the time of flight measurements.
An experiment to search for mu-e conversion named COMET is being constructed at J-PARC. The experiment will be carried out using a two-stage approach of Phase-I and Phase-II. The data taking system of Phase-I is developed based on common network tech nology. The data taking system consists of two kinds of networks. One is a front-end network. Its network bundles around twenty front-end devices that have a 1-Gb optical network port. And a front-end computer accepts data from the devices via its network. The other is a back-end network that collects all event fragments from the front-end computers using a 10-Gb network. We used a low price 1Gb/10Gb optical network switch for the front-end network. And direct connection between the front-end PC and an event building PC using 10-Gb optical network devices was used for the back-end network. The event building PC has ten 10-Gb network ports. And each network port of the event building PC is connected to the front-end PCs port without using a network switch. We evaluated data taking performance with an event building on these two kinds of networks. The event building throughput of the front-end network achieved 337 MiB/s. And the event building throughput of the back-end networks achieved 1.2 GiB/s. It means that we could reduce the construction cost of the data taking network using this structure without deteriorating performance. Moreover, we evaluated the writing speed of the local storage RAID disk system connected to a back-end PC by a SAS interface, and a long-distance network copy from the experiment location to the lasting storage.
Radiation damage on front-end readout and trigger electronics is an important issue in the COMET Phase-I experiment at J-PARC, which plans to search for the neutrinoless transition of a muon to an electron. To produce an intense muon beam, a high-pow er proton beam impinges on a graphite target, resulting in a high-radiation environment. We require radiation tolerance to a total dose of $1.0,mathrm{kGy}$ and $1,mathrm{MeV}$ equivalent neutron fluence of $1.0times10^{12},mathrm{n_{eq},cm^{-2}}$ including a safety factor of 5 over the duration of the physics measurement. The use of commercially-available electronics components which have high radiation tolerance, if such components can be secured, is desirable in such an environment. The radiation hardness of commercial electronic components has been evaluated in gamma-ray and neutron irradiation tests. As results of these tests, voltage regulators, ADCs, DACs, and several other components were found to have enough tolerance to both gamma-ray and neutron irradiation at the level we require.
The Technical Design for the COMET Phase-I experiment is presented in this paper. COMET is an experiment at J-PARC, Japan, which will search for neutrinoless conversion of muons into electrons in the field of an aluminium nucleus ($mu-e$ conversion, $mu^- N to e^- N$); a lepton flavor violating process. The experimental sensitivity goal for this process in the Phase-I experiment is $3.1times10^{-15}$, or 90 % upper limit of branching ratio of $7times 10^{-15}$, which is a factor of 100 improvement over the existing limit. The expected number of background events is 0.032. To achieve the target sensitivity and background level, the 3.2 kW 8 GeV proton beam from J-PARC will be used. Two types of detectors, CyDet and StrECAL, will be used for detecting the mue conversion events, and for measuring the beam-related background events in view of the Phase-II experiment, respectively. Results from simulation on signal and background estimations are also described.
Phase I of the NEXT-100 $0 ubetabeta$ experiment (NEW) is scheduled for data taking in 2015 at Laboratorio Subterraneo de Canfranc in the Spanish Pyrenees. Thanks to the light proportional technique, NEW anticipates an outstanding energy resolution n earing the Fano factor in Xenon (0.5-1%FWHM@$Q_{betabeta,^{136}Xe}$), with a TPC-design that allows tracking and identification of the double end-blob feature of the $0 ubetabeta$ decay. When properly mastered, the combination of these two assets can suppress the irreducible $2 ubetabeta$ and (single-blob) $gamma$ backgrounds from natural radioactivity to minute levels, of the order of $5times{10^{-4}}$ ckky. Given our knowledge of the available phase-space as obtained from neutrino oscillation experiments, this feat will expectedly allow for a sensitivity to the effective electron neutrino mass of $m_{betabeta}simeq 30$ meV for exposures at the 20 ton $times$ year scale. Hence, ultimately, a full survey of the inverse hierarchy of the neutrino mass ordering appears to be within reach for a ton-scale experiment based on this technology. NEW, with 10 kg of Xenon 90%-enriched in $^{136}$Xe, sets an unprecedented scale for gaseous Xenon TPCs and will be an important milestone for its anticipated upgrades (100 kg and 1 ton). I briefly summarize the status of the NEXT experiment, from the main results obtained with $sim 1$ kg prototypes that substantiate the concept, to the ongoing works for deploying its first phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا