ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin-resolved Quantum Interference in Graphene

149   0   0.0 ( 0 )
 نشر من قبل Mark Lundeberg
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The unusual electronic properties of single-layer graphene make it a promising material system for fundamental advances in physics, and an attractive platform for new device technologies. Graphenes spin transport properties are expected to be particularly interesting, with predictions for extremely long coherence times and intrinsic spin-polarized states at zero field. In order to test such predictions, it is necessary to measure the spin polarization of electrical currents in graphene. Here, we resolve spin transport directly from conductance features that are caused by quantum interference. These features split visibly in an in-plane magnetic field, similar to Zeeman splitting in atomic and quantum dot systems. The spin-polarized conductance features that are the subject of this work may, in the future, lead to the development of graphene devices incorporating interference-based spin filters.



قيم البحث

اقرأ أيضاً

We report the first experimental study of the quantum interference correction to the conductivity of bilayer graphene. Low-field, positive magnetoconductivity due to the weak localisation effect is investigated at different carrier densities, includi ng those around the electroneutrality region. Unlike conventional 2D systems, weak localisation in bilayer graphene is affected by elastic scattering processes such as intervalley scattering. Analysis of the dephasing determined from the magnetoconductivity is complemented by a study of the field- and density-dependent fluctuations of the conductance. Good agreement in the value of the coherence length is found between these two studies.
The ability to detect and distinguish quantum interference signatures is important for both fundamental research and for the realization of devices including electron resonators, interferometers and interference-based spin filters. Consistent with th e principles of subwavelength optics, the wave nature of electrons can give rise to various types of interference effects, such as Fabry-Perot resonances, Fano resonances and the Aharonov-Bohm effect. Quantum-interference conductance oscillations have indeed been predicted for multiwall carbon nanotube shuttles and telescopes, and arise from atomic-scale displacements between the inner and outer tubes. Previous theoretical work on graphene bilayers indicates that these systems may display similar interference features as a function of the relative position of the two sheets. Experimental verification is, however, still lacking. Graphene nanoconstrictions represent an ideal model system to study quantum transport phenomena due to the electronic coherence and the transverse confinement of the carriers. Here, we demonstrate the fabrication of bowtie-shaped nanoconstrictions with mechanically controlled break junctions (MCBJs) made from a single layer of graphene. We find that their electrical conductance displays pronounced oscillations at room temperature, with amplitudes that modulate over an order of magnitude as a function of sub-nanometer displacements. Surprisingly, the oscillations exhibit a period larger than the graphene lattice constant. Charge-transport calculations show that the periodicity originates from a combination of quantum-interference and lattice-commensuration effects of two graphene layers that slide across each other. Our results provide direct experimental observation of Fabry-Perot-like interference of electron waves that are partially reflected/transmitted at the edges of the graphene bilayer overlap region.
We present real-time detection measurements of electron tunneling in a graphene quantum dot. By counting single electron charging events on the dot, the tunneling process in a graphene constriction and the role of localized states are studied in deta il. In the regime of low charge detector bias we see only a single time-dependent process in the tunneling rate which can be modeled using a Fermi-broadened energy distribution of the carriers in the lead. We find a non-monotonic gate dependence of the tunneling coupling attributed to the formation of localized states in the constriction. Increasing the detector bias above 2 mV results in an increase of the dot-lead transition rate related to back-action of the charge detector current on the dot.
Effects of disorder on the electronic transport properties of graphene are strongly affected by the Dirac nature of the charge carriers in graphene. This is particularly pronounced near the Dirac point, where relativistic charge carriers cannot effic iently screen the impurity potential. We have studied time-dependent conductance fluctuations and magnetoresistance in graphene in the close vicinity of the Dirac point. We show that the fluctuations are due to the quantum interference effects due to scattering on impurities, and find an unusually large reduction of the relative noise power in magnetic field, possibly indicating that an additional symmetry plays an important role in this regime.
We demonstrate that hexagonal graphene nanoflakes with zigzag edges display quantum interference (QI) patterns analogous to benzene molecular junctions. In contrast with graphene sheets, these nanoflakes also host magnetism. The cooperative effect of QI and magnetism enables spin-dependent quantum interference effects that result in a nearly complete spin polarization of the current, and holds a huge potential for spintronic applications. We understand the origin of QI in terms of symmetry arguments, which show the robustness and generality of the effect. This also allows us to devise a concrete protocol for the electrostatic control of the spin polarization of the current by breaking the sublattice symmetry of graphene, by deposition on hexagonal boron nitride, paving the way to switchable spin-filters. Such a system benefits of all the extraordinary conduction properties of graphene, and at the same time, it does not require any external magnetic field to select the spin polarization, as magnetism emerges spontaneously at the edges of the nanoflake.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا