ﻻ يوجد ملخص باللغة العربية
Greedy algorithms are popular in compressive sensing for their high computational efficiency. But the performance of current greedy algorithms can be degenerated seriously by noise (both multiplicative noise and additive noise). A robust version of greedy cosparse greedy algorithm (greedy analysis pursuit) is presented in this paper. Comparing with previous methods, The proposed robust greedy analysis pursuit algorithm is based on an optimization model which allows both multiplicative noise and additive noise in the data fitting constraint. Besides, a new stopping criterion that is derived. The new algorithm is applied to compressive sensing of ECG signals. Numerical experiments based on real-life ECG signals demonstrate the performance improvement of the proposed greedy algorithms.
This paper addresses compressive sensing for multi-channel ECG. Compared to the traditional sparse signal recovery approach which decomposes the signal into the product of a dictionary and a sparse vector, the recently developed cosparse approach exp
Compressive sensing has shown significant promise in biomedical fields. It reconstructs a signal from sub-Nyquist random linear measurements. Classical methods only exploit the sparsity in one domain. A lot of biomedical signals have additional struc
A novel probabilistic sparsity-promoting method for robust near-field (NF) antenna characterization is proposed. It leverages on the measurements-by-design (MebD) paradigm and it exploits some a-priori information on the antenna under test (AUT) to g
We discuss a novel sampling theorem on the sphere developed by McEwen & Wiaux recently through an association between the sphere and the torus. To represent a band-limited signal exactly, this new sampling theorem requires less than half the number o
We demonstrate that a sparse signal can be estimated from the phase of complex random measurements, in a phase-only compressive sensing (PO-CS) scenario. With high probability and up to a global unknown amplitude, we can perfectly recover such a sign