ترغب بنشر مسار تعليمي؟ اضغط هنا

Novel Physics With Tensor Polarized Targets

60   0   0.0 ( 0 )
 نشر من قبل Karl Slifer
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The Jefferson Lab PAC recently approved an experiment which will use an enhanced tensor po- larized solid target. This exciting development holds the potential of initiating a new field of tensor spin physics at JLab. Experiments which utilize tensor polarized targets can help clarify how nuclear properties arise from partonic degrees of freedom, provide unique insight into short range correlations and quark angular momentum, and help pin down the polarization of the quark sea.

قيم البحث

اقرأ أيضاً

A polarized antiproton beam at the Facility for Antiproton and Ion Research, proposed by the PAX collaboration, will open a window to new physics uniquely accessible at the new High Energy Storage Ring. Our proposal to realize an asymmetric collider, in which polarized protons with momenta of about 3.5 GeV/c collide with polarized antiprotons with momenta up to 15 GeV/c, is well--suited to perform a direct measurement of the transversity distribution function $h_1$. In this report we summarize the outcome of various working group meetings within the PAX collaboration. The overall machine setup at the HESR, proposed by the PAX collaboration, is described along with the associated PAX experimental program.
131 - Eric Voutier 2014
Charge symmetry in hadronic reactions, either verified or violated, appears to be in some circumstances a mandatory guide for model-independent understanding of the structure and dynamics at play. The recent demonstration of the PEPPo concept for the production of polarized positrons opens new physics perspectives at the Jefferson Laboratory. Polarized positron beams, in complement to existing polarized electron beams, are shown to bring multi-Physics opportunities.
Measurements of the beta-neutrino correlation coefficient (a$_{beta u}$) in nuclear beta decay, together with the Fierz interference term (b$_F$), provide a robust test for the existence of exotic interactions beyond the Standard Model of Particle Ph ysics. The extraction of these quantities from the recoil ion spectra in $beta$-decay requires accurate knowledge, decay branching ratios, and high-precision calculations of higher order nuclear effects. Here, we report on a new measurement of the $^{23}$Ne $beta$-decay branching ratio, which allows a reanalysis of existing high-precision measurements. Together with new theoretical calculations of nuclear structure effects, augmented with robust theoretical uncertainty, this measurement improves on the current knowledge of a$_{beta u}$ in $^{23}$Ne by an order of magnitude, and strongly constrains the Fierz term in beta decays, making this one of the first extractions to constrain both terms simultaneously. Together, these results place bounds on the existence of exotic tensor interactions and pave the way for new, even higher precision, experiments.
52 - Q. Ye , G. Laskaris , H. Gao 2009
Following the first experiment on three-body photodisintegration of polarized $^3$He utilizing circularly polarized photons from High Intensity Gamma Source (HI$gamma$S) at Duke Free Electron Laser Laboratory (DFELL), a new high-pressure polarized $^ 3$He target cell made of pyrex glass coated with a thin layer of sol-gel doped with aluminum nitrate nonahydrate has been built in order to reduce the photon beam induced background. The target is based on the technique of spin-exchange optical pumping of hybrid rubidium and potassium and the highest polarization achieved is $sim$62% determined from both NMR-AFP and EPR polarimetry. The $X$ parameter is estimated to be $sim0.06$ and the performance of the target is in good agreement with theoretical predictions. We also present beam test results from this new target cell and the comparison with the GE180 $^3$He target cell used previously at HI$gamma$S. This is the first time that sol-gel coating technique has been used in a polarized $^3$He target for nuclear physics experiments.
75 - A. Ferrero 2020
A major part of the future COMPASS program is dedicated to the investigation of the nucleon structure through Deeply Virtual Compton Scattering (DVCS) and Deeply Virtual Meson Production (DVMP). COMPASS will measure DVCS and DVMP reactions with a hig h intensity muon beam of 160 GeV and a 2.5 m-long liquid hydrogen target surrounded by a new TOF system. The availability of muon beams with high energy and opposite charge and polarization will allow to access the Compton form factor related to the dominant GPD $H$ and to study the $x_{B}$-dependence of the $t$-slope of the pure DVCS cross section and to study nucleon tomography. Projections on the achievable accuracies and preliminary results of pilot measurements will be presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا