ﻻ يوجد ملخص باللغة العربية
A major part of the future COMPASS program is dedicated to the investigation of the nucleon structure through Deeply Virtual Compton Scattering (DVCS) and Deeply Virtual Meson Production (DVMP). COMPASS will measure DVCS and DVMP reactions with a high intensity muon beam of 160 GeV and a 2.5 m-long liquid hydrogen target surrounded by a new TOF system. The availability of muon beams with high energy and opposite charge and polarization will allow to access the Compton form factor related to the dominant GPD $H$ and to study the $x_{B}$-dependence of the $t$-slope of the pure DVCS cross section and to study nucleon tomography. Projections on the achievable accuracies and preliminary results of pilot measurements will be presented.
We propose to perform measurements of asymmetries of the Drell-Yan (DY) pairs production in collisions of non-polarized, longitudinally and transversally polarized protons and deuterons which provide an access to all leading twist collinear and TMD P
The SPD experiment at the future NICA collider at JINR (Dubna, Russia) aims to investigate the nucleon spin structure and polarization phenomena in collisions of longitudinally and transversely polarized protons and deuterons at $sqrt{s}$ up to 27 Ge
The main characteristics of the COMPASS experimental setup for physics with hadron beams are described. This setup was designed to perform exclusive measurements of processes with several charged and/or neutral particles in the final state. Making us
Exotic charmonium-like states have been targeted by various experiments in the last 15 years, but their nature still is unknown. Photo-(muo)production is a new promising instrument to study them. COMPASS, a fixed target experiment at CERN, analyzed t
A polarized antiproton beam at the Facility for Antiproton and Ion Research, proposed by the PAX collaboration, will open a window to new physics uniquely accessible at the new High Energy Storage Ring. Our proposal to realize an asymmetric collider,