ﻻ يوجد ملخص باللغة العربية
Charge symmetry in hadronic reactions, either verified or violated, appears to be in some circumstances a mandatory guide for model-independent understanding of the structure and dynamics at play. The recent demonstration of the PEPPo concept for the production of polarized positrons opens new physics perspectives at the Jefferson Laboratory. Polarized positron beams, in complement to existing polarized electron beams, are shown to bring multi-Physics opportunities.
Positron beams, both polarized and unpolarized, are identified as essential ingredients for the experimental program at the next generation of lepton accelerators. In the context of the Hadronic Physics program at the Jefferson Laboratory (JLab), pos
Photoproduction cross sections are reported for the reaction $gamma pto peta$ using energy-tagged photons and the CLAS spectrometer at Jefferson Laboratory. The $eta$ mesons are detected in their dominant charged decay mode, $etato pi^+pi^-pi^0$, and
Baryons are complex systems of confined quarks and gluons and exhibit the characteristic spectra of excited states. The systematics of the baryon excitation spectrum is important to our understanding of the effective degrees of freedom underlying nuc
Positron beams, both polarized and unpolarized, are identified as essential ingredients for the experimental programs at the next generation of lepton accelerators. In the context of the hadronic physics program at Jefferson Lab (JLab), positron beam
The photoproduction of $omega$ mesons off the proton has been studied in the reaction $gamma pto p,omega$ using the CEBAF Large Acceptance Spectrometer (CLAS) and the frozen-spin target (FROST) in Hall B at the Thomas Jefferson National Accelerator F