ترغب بنشر مسار تعليمي؟ اضغط هنا

Gravity gradient torque of spacecraft orbiting asteroids

342   0   0.0 ( 0 )
 نشر من قبل Yue Wang
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Purpose: This paper presents a full fourth-order model of the gravity gradient torque of spacecraft around asteroids by taking into consideration of the inertia integrals of the spacecraft up to the fourth order, which is an improvement of the previous fourth-order model of the gravity gradient torque. Design, methodology and approach: The fourth-order gravitational potential of the spacecraft is derived based on Taylor expansion. Then the expression of the gravity gradient torque in terms of gravitational potential derivatives is derived. By using the formulation of the gravitational potential, explicit formulations of the full fourth-order gravity gradient torque are obtained. Then a numerical simulation is carried out to verify our model. Findings: We find that our model is more sound and precise than the previous fourth-order model due to the consideration of higher-order inertia integrals of the spacecraft. Numerical simulation results show that the motion of the previous fourth-order model is quite different from the exact motion, while our full fourth-order model fits the exact motion very well. Our full fourth-order model is precise enough for high-precision attitude dynamics and control around asteroids. Practical implications: This high-precision model is of importance for the future asteroids missions for scientific explorations and near-Earth objects mitigation. Originality and value: In comparison with the previous model, a gravity gradient torque model around asteroids that is more sound and precise is established. This model is valuable for high-precision attitude dynamics and control around asteroids.

قيم البحث

اقرأ أيضاً

42 - Yue Wang , Hong Guan , Shijie Xu 2014
The dynamical behavior of spacecraft around asteroids is a key element in design of such missions. An asteroids irregular shape, non-spherical mass distribution and its rotational sate make the dynamics of spacecraft quite complex. This paper focuses on the gravity gradient torque of spacecraft around non-spherical asteroids. The gravity field of the asteroid is approximated as a 2nd degree and order-gravity field with harmonic coefficients C20 and C22. By introducing the spacecrafts higher-order inertia integrals, a full fourth-order gravity gradient torque model of the spacecraft is established through the gravitational potential derivatives. Our full fourth-order model is more precise than previous fourth-order model due to the consideration of higher-order inertia integrals of the spacecraft. Some interesting conclusions about the gravity gradient torque model are reached. Then a numerical simulation is carried out to verify our model. In the numerical simulation, a special spacecraft consisted of 36 point masses connected by rigid massless rods is considered. We assume that the asteroid is in a uniform rotation around its maximum-moment principal axis, and the spacecraft is on the stationary orbit in the equatorial plane. Simulation results show that the motion of previous fourth-order model is quite different from the exact motion, while our full fourth-order model fits the exact motion very well. And our model is precise enough for practical applications.
109 - Yue Wang , Shijie Xu 2014
The classical problem of attitude stability in a central gravity field is generalized to that on a stationary orbit around a uniformly-rotating asteroid. This generalized problem is studied in the framework of geometric mechanics. Based on the natura l symplectic structure, the non-canonical Hamiltonian structure of the problem is derived. The Poisson tensor, Casimir functions and equations of motion are obtained in a differential geometric method. The equilibrium of the equations of motion, i.e. the equilibrium attitude of the spacecraft, is determined from a global point of view. Nonlinear stability conditions of the equilibrium attitude are obtained with the energy-Casimir method. The nonlinear attitude stability is then investigated versus three parameters of the asteroid, including the ratio of the mean radius to the stationary orbital radius, the harmonic coefficients C20 and C22. It is found that when the spacecraft is located on the intermediate-moment principal axis of the asteroid, the nonlinear stability domain can be totally different from the classical Lagrange region on a circular orbit in a central gravity field.
102 - David Trevascus 2021
Of the 21 known gaseous debris discs around white dwarfs, a large fraction of them display observational features that are well described by an eccentric distribution of gas. In the absence of embedded objects or additional forces, these discs should not remain eccentric for long timescales, and should instead circularise due to viscous spreading. The metal pollution and infrared excess we observe from these stars is consistent with the presence of tidally disrupted sub-stellar bodies. We demonstrate, using smoothed particle hydrodynamics, that a sublimating or partially disrupting planet on an eccentric orbit around a white dwarf will form and maintain a gas disc with an eccentricity within 0.1 of, and lower than, that of the orbiting body. We also demonstrate that the eccentric gas disc observed around the white dwarf SDSS J1228+1040 can be explained by the same hypothesis.
Analysis of laboratory experiments simulating space weathering optical effects on atmosphereless planetary bodies reveals that the time needed to alter the spectrum of an ordinary chondrite meteorite to resemble the overall spectral shape and slope o f an S-type asteroid is about ~ 0.1 Myr. The time required to reduce the visible albedo of samples to ~ 0.05 is ~ 1 Myr. Since both these timescales are much less than the average collisional lifetime of asteroids larger than several kilometers in size, numerous low-albedo asteroids having reddish spectra with subdued absorption bands should be observed instead of an S-type dominated population. It is not the case because asteroid surfaces cannot be considered as undisturbed, unlike laboratory samples. We have estimated the number of collisions occurring in the time of 105 yr between asteroids and projectiles of various sizes and show that impact-activated motions of regolith particles counteract the progress of optical maturation of asteroid surfaces. Continual rejuvenation of asteroid surfaces by impacts does not allow bodies with the ordinary chondrite composition to be masked among S asteroids. Spectroscopic analysis, using relatively invariant spectral parameters, such as band centers and band area ratios, can determine whether the surface of an S asteroid has chondritic composition or not. Differences in the environment of the main asteroid belt versus that at 1 AU, and the physical difference between the Moon and main belt asteroids (i.e., size) can account for the lack of lunar-type weathering on main belt asteroids.
We present $V$-band photometry of the 20,000 brightest asteroids using data from the All-Sky Automated Survey for Supernovae (ASAS-SN) between 2012 and 2018. We were able to apply the convex inversion method to more than 5,000 asteroids with more tha n 60 good measurements in order to derive their sidereal rotation periods, spin axis orientations, and shape models. We derive unique spin state and shape solutions for 760 asteroids, including 163 new determinations. This corresponds to a success rate of about 15%, which is significantly higher than the success rate previously achieved using photometry from surveys. We derive the first sidereal rotation periods for additional 69 asteroids. We find good agreement in spin periods and pole orientations for objects with prior solutions. We obtain a statistical sample of asteroid physical properties that is sufficient for the detection of several previously known trends, such as the underrepresentation of slow rotators in current databases, and the anisotropic distribution of spin orientations driven by the nongravitational forces. We also investigate the dependence of spin orientations on the rotation period. Since 2018, ASAS-SN has been observing the sky with higher cadence and deeper limiting magnitude, which will lead to many more new solutions in just a few years.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا