ﻻ يوجد ملخص باللغة العربية
The complex iridium oxide Na3Ir3O8 with a B-site ordered spinel structure was synthesized in single crystalline form, where the chiral hyper-kagome lattice of Ir atoms, as observed in the spin-liquid candidate Na4Ir3O8, was identified. The average valence of Ir is 4.33+ and, therefore, Na3Ir3O8 can be viewed as a doped analogue of the hyper-kagome spin liquid with Ir4+. The transport measurements showed that Na3Ir3O8 is in fact a semi-metal. The electronic structure calculation demonstrated that the strong spin-orbit coupling of Ir yields the semi-metallic state out of an otherwise band insulating state, which may harbor exotic topological effects embedded in the hyper-kagome lattice.
We present a microscopic study of a doped quantum spin liquid candidate, the hyperkagome Na$_3$Ir$_3$O$_8$ compound by using $^{23}$Na NMR. We determine the intrinsic behavior of the uniform textbf{q} $ = 0$ susceptibility via shift measurements and
We investigated electronic structure of 5d transition-metal oxide Sr2IrO4 using angle-resolved photoemission, optical conductivity, and x-ray absorption measurements and first-principles band calculations. The system was found to be well described by
A hole injected into a Mott insulator will gain an internal structure as recently identified by exact numerics, which is characterized by a nontrivial quantum number whose nature is of central importance in understanding the Mott physics. In this wor
Entanglement of spin and orbital degrees of freedom drives the formation of novel quantum and topological physical states. Discovering new spin-orbit entangled ground states and emergent phases of matter requires both experimentally probing the relev
We study spin-orbit coupling in metallic carbon nanotubes (CNTs) within the many-body Tomonaga-Luttinger liquid (TLL) framework. For a well defined sub-class of metallic CNTs, that contains both achiral zig-zag as well as a sub-set of chiral tubes, a