ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin-orbit coupling induced semi-metallic state in the 1/3 hole doped hyper-kagome Na3Ir3O8

559   0   0.0 ( 0 )
 نشر من قبل Tomohiro Takayama
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The complex iridium oxide Na3Ir3O8 with a B-site ordered spinel structure was synthesized in single crystalline form, where the chiral hyper-kagome lattice of Ir atoms, as observed in the spin-liquid candidate Na4Ir3O8, was identified. The average valence of Ir is 4.33+ and, therefore, Na3Ir3O8 can be viewed as a doped analogue of the hyper-kagome spin liquid with Ir4+. The transport measurements showed that Na3Ir3O8 is in fact a semi-metal. The electronic structure calculation demonstrated that the strong spin-orbit coupling of Ir yields the semi-metallic state out of an otherwise band insulating state, which may harbor exotic topological effects embedded in the hyper-kagome lattice.



قيم البحث

اقرأ أيضاً

We present a microscopic study of a doped quantum spin liquid candidate, the hyperkagome Na$_3$Ir$_3$O$_8$ compound by using $^{23}$Na NMR. We determine the intrinsic behavior of the uniform textbf{q} $ = 0$ susceptibility via shift measurements and the dynamical response by probing the spin-lattice relaxation rate. Throughout the studied temperature range, the susceptibility is consistent with a semimetal behavior, though with electronic bands substantially modified by correlations. Remarkably, the antiferromagnetic fluctuations present in the insulating parent compound Na$_4$Ir$_3$O$_8$ survive in the studied compound. The spin dynamics are consistent with 120$^o$ excitations modes displaying short-range correlations.
292 - B. J. Kim , Hosub Jin , S. J. Moon 2008
We investigated electronic structure of 5d transition-metal oxide Sr2IrO4 using angle-resolved photoemission, optical conductivity, and x-ray absorption measurements and first-principles band calculations. The system was found to be well described by novel effective total angular momentum Jeff states, in which relativistic spin-orbit (SO) coupling is fully taken into account under a large crystal field. Despite of delocalized Ir 5d states, the Jeff-states form so narrow bands that even a small correlation energy leads to the Jeff = 1/2 Mott ground state with unique electronic and magnetic behaviors, suggesting a new class of the Jeff quantum spin driven correlated-electron phenomena.
A hole injected into a Mott insulator will gain an internal structure as recently identified by exact numerics, which is characterized by a nontrivial quantum number whose nature is of central importance in understanding the Mott physics. In this wor k, we show that a spin texture associated with such an internal degree of freedom can explicitly manifest after the spin degeneracy is lifted by a emph{weak} Rashba spin-orbit coupling (SOC). It is described by an emergent angular momentum $J_{z}=pm3/2$ as shown by both exact diagonalization (ED) and variational Monte Carlo (VMC) calculations, which are in good agreement with each other at a finite size. In particular, as the internal structure such a spin texture is generally present in the hole composite even at high excited energies, such that a corresponding texture in momentum space, extending deep inside the Brillouin zone, can be directly probed by the spin-polarized angle-resolved photoemission spectroscopy (ARPES). This is in contrast to a Landau quasiparticle under the SOC, in which the spin texture induced by SOC will not be protected once the excited energy is larger than the weak SOC coupling strength, away from the Fermi energy. We point out that the spin texture due to the SOC should be monotonically enhanced with reducing spin-spin correlation length in the superconducting/pseudogap phase at finite doping. A brief discussion of a recent experiment of the spin-polarized ARPES will be made.
Entanglement of spin and orbital degrees of freedom drives the formation of novel quantum and topological physical states. Discovering new spin-orbit entangled ground states and emergent phases of matter requires both experimentally probing the relev ant energy scales and applying suitable theoretical models. Here we report resonant inelastic x-ray scattering measurements of the transition metal oxides Ca$_3$LiOsO$_6$ and Ba$_2$YOsO$_6$. We invoke an intermediate coupling approach that incorporates both spin-orbit coupling and electron-electron interactions on an even footing and reveal the ground state of $5d^3$ based compounds, which has remained elusive in previously applied models, is a novel spin-orbit entangled J=3/2 electronic ground state. This work reveals the hidden diversity of spin-orbit controlled ground states in 5d systems and introduces a new arena in the search for spin-orbit controlled phases of matter.
244 - Piotr Chudzinski 2015
We study spin-orbit coupling in metallic carbon nanotubes (CNTs) within the many-body Tomonaga-Luttinger liquid (TLL) framework. For a well defined sub-class of metallic CNTs, that contains both achiral zig-zag as well as a sub-set of chiral tubes, a n effective low energy field theory description is derived. We aim to describe system at finite dopings, but close to the charge neutrality point (commensurability). A new regime is identified where spin-orbit coupling leads to an inverted hierarchy of mini-gaps of bosonic modes. We then add a proximity coupling to a superconducting (SC) substrate and show that the only order parameter that is supported within the novel, spin-orbit induced phase is a topologically trivial s-SC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا