ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin-orbit coupling and proximity effects in metallic carbon nanotubes

186   0   0.0 ( 0 )
 نشر من قبل Piotr Chudzinski
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Piotr Chudzinski




اسأل ChatGPT حول البحث

We study spin-orbit coupling in metallic carbon nanotubes (CNTs) within the many-body Tomonaga-Luttinger liquid (TLL) framework. For a well defined sub-class of metallic CNTs, that contains both achiral zig-zag as well as a sub-set of chiral tubes, an effective low energy field theory description is derived. We aim to describe system at finite dopings, but close to the charge neutrality point (commensurability). A new regime is identified where spin-orbit coupling leads to an inverted hierarchy of mini-gaps of bosonic modes. We then add a proximity coupling to a superconducting (SC) substrate and show that the only order parameter that is supported within the novel, spin-orbit induced phase is a topologically trivial s-SC.

قيم البحث

اقرأ أيضاً

Using the framework of the density-matrix renormalization group (DMRG), we study a quantum dot coupled to a superconducting nanowire with strong Rashba spin-orbit coupling. Regarding the singlet-to-doublet 0-$pi$ transition that takes place when the Kondo effect is overcome by the superconducting gap, we show that the Rashba coupling modifies the critical values at which the transition occurs, favouring the doublet phase. In addition, using a generalized Haldanes formula for the Kondo temperature $T_K$, we show that it is lowered by the Rashba coupling. We benchmark our DMRG results comparing them with previous numerical renormalization group (NRG) results. The excellent agreement obtained opens the possibility of studying chains or clusters of impurities coupled to superconductors by the means of DMRG.
It has recently been recognized that the strong spin-orbit interaction present in solids can lead to new phenomena, such as materials with non-trivial topological order. Although the atomic spin-orbit coupling in carbon is weak, the spin-orbit coupli ng in carbon nanotubes can be significant due to their curved surface. Previous works have reported spin-orbit couplings in reasonable agreement with theory, and this coupling strength has formed the basis of a large number of theoretical proposals. Here we report a spin-orbit coupling in three carbon nanotube devices that is an order of magnitude larger than measured before. We find a zero-field spin splitting of up to 3.4 meV, corresponding to a built-in effective magnetic field of 29 T aligned along the nanotube axis. While the origin of the large spin-orbit coupling is not explained by existing theories, its strength is promising for applications of the spin-orbit interaction in carbon nanotubes devices.
Cold atoms with laser-induced spin-orbit (SO) interactions provide promising platforms to explore novel quantum physics, in particular the exotic topological phases, beyond natural conditions of solids. The past several years have witnessed important progresses in both theory and experiment in the study of SO coupling and novel quantum states for ultracold atoms. Here we review the physics of the SO coupled quantum gases, focusing on the latest theoretical and experimental progresses of realizing SO couplings beyond one-dimension (1D), and the further investigation of novel topological quantum phases in such systems, including the topological insulating phases and topological superfluids. A pedagogical introduction to the SO coupling for ultracold atoms and topological quantum phases is presented. We show that the so-called optical Raman lattice schemes, which combine the creation of the conventional optical lattice and Raman lattice with topological stability, can provide minimal methods with high experimental feasibility to realize 1D to 3D SO couplings. The optical Raman lattices exhibit novel intrinsic symmetries, which enable the natural realization of topological phases belonging to different symmetry classes, with the topology being detectable through minimal measurement strategies. We introduce how the non-Abelian Majorana modes emerge in the SO coupled superfluid phases which can be topologically nontrivial or trivial, for which a few fundamental theorems are presented and discussed. The experimental schemes for achieving non-Abelian superfluid phases are given. Finally, we point out the future important issues in this rapidly growing research field.
The electronic states in isolated single-wall carbon nanotubes (SWCNTs) have been considered as an ideal realization of a Tomonaga-Luttinger liquid (TLL). However, it remains unclear whether one-dimensional correlated states are realized under local environmental effects such as the formation of a bundle structure. Intertube effects originating from other adjacent SWCNTs within a bundle may drastically alter the one-dimensional correlated state. In order to test the validity of the TLL model in bundled SWCNTs, low-energy spin excitation is investigated by nuclear magnetic resonance (NMR). The NMR relaxation rate in bundled mixtures of metallic and semiconducting SWCNTs shows a power-law temperature dependence with a theoretically predicted exponent. This demonstrates that a TLL state with the same strength as that for effective Coulomb interactions is realized in a bundled sample, as in isolated SWCNTs. In bundled metallic SWCNTs, we found a power-law temperature dependence of the relaxation rate, but the magnitude of the relaxation rate is one order of magnitude smaller than that predicted by theory. Furthermore, we found an almost doubled magnitude of the Luttinger parameter. These results indicate suppressed spin excitations with reduced Coulomb interactions in bundled metallic SWCNTs, which are attributable to intertube interactions originating from adjacent metallic SWCNTs within a bundle. Our findings give direct evidence that bundling reduces the effective Coulomb interactions via intertube interactions within bundled metallic SWCNTs.
Lacunar spinel GaTa$_4$Se$_8$ is a unique example of spin-orbit coupled Mott insulator described by molecular $j_{text{eff}}!=!3/2$ states. It becomes superconducting at T$_c$=5.8K under pressure without doping. In this work, we show, this pressure-i nduced superconductivity is a realization of a new type topological phase characterized by spin-2 Cooper pairs. Starting from first-principles density functional calculations and random phase approximation, we construct the microscopic model and perform the detailed analysis. Applying pressure is found to trigger the virtual interband tunneling processes assisted by strong Hund coupling, thereby stabilizing a particular $d$-wave quintet channel. Furthermore, we show that its Bogoliubov quasiparticles and their surface states exhibit novel topological nature. To verify our theory, we propose unique experimental signatures that can be measured by Josephson junction transport and scanning tunneling microscope. Our findings open up new directions searching for exotic superconductivity in spin-orbit coupled materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا