ترغب بنشر مسار تعليمي؟ اضغط هنا

Parameters Affecting Temporal Resolution of Time Resolved Integrative Optical Neutron Detector (TRION)

44   0   0.0 ( 0 )
 نشر من قبل Ilan Mor
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Time-Resolved Integrative Optical Neutron (TRION) detector was developed for Fast Neutron Resonance Radiography (FNRR), a fast-neutron transmission imaging method that exploits characteristic energy-variations of the total scattering cross-section in the En = 1-10 MeV range to detect specific elements within a radiographed object. As opposed to classical event-counting time of flight (ECTOF), it integrates the detector signal during a well-defined neutron Time of Flight window corresponding to a pre-selected energy bin, e.g., the energy-interval spanning a cross-section resonance of an element such as C, O and N. The integrative characteristic of the detector permits loss-free operation at very intense, pulsed neutron fluxes, at a cost however, of recorded temporal resolution degradation. This work presents a theoretical and experimental evaluation of detector related parameters which affect temporal resolution of the TRION system.

قيم البحث

اقرأ أيضاً

73 - Tao Yang , Yuhang Tan , Qing Liu 2021
We report the time resolution of 100 $rm mu m$ 4H-SiC PIN detectors which are fabricated by Nanjing University (NJU). The time responses for $rm beta$ particle from $rm ^{90}$Sr source are investigated for the detection of the minimum ionizing partic les (MIPs). The influences of different reverse voltages which correspond to carrier velocity and device sizes which correlate with capacitance for time resolution are studied. We acquired a time resolution (94$pm$1) ps for 100 $rm mu m$ 4H-SiC PIN detector. A fast simulation software - RASER (RAdiation SEmiconductoR) has been developed to simulate the time resolution of 4H-SiC detector, and the simulation has been validated by the waveform comparison of RASER simulation and measured data. The simulated time resolution is (53 $pm$ 1) ps after consider the intrinsic leading contributions of detector in time resolution.
We have developed a prototype time-resolved neutron imaging detector employing a micro-pattern gaseous detector known as the micro-pixel chamber ({mu}PIC) coupled with a field-programmable-gate-array-based data acquisition system. Our detector system combines 100{mu}m-level spatial and sub-{mu}s time resolutions with a low gamma sensitivity of less than 10^-12 and high data rates, making it well suited for applications in neutron radiography at high-intensity, pulsed neutron sources. In the present paper, we introduce the detector system and present several test measurements performed at NOBORU (BL10), J-PARC to demonstrate the capabilities of our prototype. We also discuss future improvements to the spatial resolution and rate performance.
In non-destructive evaluation with X-rays light elements embedded in dense, heavy (or high-Z) matrices show little contrast and their structural details can hardly be revealed. Neutron radiography, on the other hand, provides a solution for those cas es, in particular for hydrogenous materials, owing to the large neutron scattering cross section of hydrogen and uncorrelated dependency of neutron cross section on the atomic number. The majority of neutron imaging experiments at the present time is conducted with static objects mainly due to the limited flux intensity of neutron beamline facilities and sometimes due to the limitations of the detectors. However, some applications require the studies of dynamic phenomena and can now be conducted at several high intensity beamlines such as the recently rebuilt ANTARES beam line at the FRM-II reactor. In this paper we demonstrate the capabilities of time resolved imaging for repetitive processes, where different phases of the process can be imaged simultaneously and integrated over multiple cycles. A fast MCP/Timepix neutron counting detector was used to image the water distribution within a model steam engine operating at 10 Hz frequency. Within <10 minutes integration the amount of water was measured as a function of cycle time with a sub-mm spatial resolution, thereby demonstrating the capabilities of time-resolved neutron radiography for the future applications. The neutron spectrum of the ANTARES beamline as well as transmission spectra of a Fe sample were also measured with the Time Of Flight (TOF) technique in combination with a high resolution beam chopper. The energy resolution of our setup was found to be ~0.8% at 5 meV and ~1.7% at 25 meV.
We present a detailed study of the spatial resolution of our time-resolved neutron imaging detector utilizing a new neutron position reconstruction method that improves both spatial resolution and event reconstruction efficiency. Our prototype detect or system, employing a micro-pattern gaseous detector known as the micro-pixel chamber ({mu}PIC) coupled with a field-programmable-gate-array-based data acquisition system, combines 100{mu}m-level spatial and sub-{mu}s time resolutions with excellent gamma rejection and high data rates, making it well suited for applications in neutron radiography at high-intensity, pulsed neutron sources. From data taken at the Materials and Life Science Experimental Facility within the Japan Proton Accelerator Research Complex (J-PARC), the spatial resolution was found to be approximately Gaussian with a sigma of 103.48 +/- 0.77 {mu}m (after correcting for beam divergence). This is a significant improvement over that achievable with our previous reconstruction method (334 +/- 13 {mu}m), and compares well with conventional neutron imaging detectors and with other high-rate detectors currently under development. Further, a detector simulation indicates that a spatial resolution of less than 60 {mu}m may be possible with optimization of the gas characteristics and {mu}PIC structure. We also present an example of imaging combined with neutron resonance absorption spectroscopy.
We report on the performance of a micro-TPC with a micro pixel chamber($mu$-PIC) readout for a time-resolved neutron position-sensitive detector(PSD). Three-dimensional tracks and the Bragg curves of protons with energies of around 1 MeV were clearly detected by the micro-TPC. More than 95% of gamma-rays of 511 keV were found to be discriminated by simple analysis. Simulation studies showed that the total track length of proton and triton emitted from the $rm {}^{3}He$(n,p(573 keV))$rm {}^{3}H(191 keV)$ reaction is about 1.2 cm, and that both particles have large energy losses ($rm > 200 keV/cm$) in 1 atm Ar+$rm C_{2}H_{6}(10%)$+${}^{3}$He($< 1%$). These values suit the current performance of the micro-TPC, and we conclude that a time-resolved neutron PSD with spatial resolution of sub-millimeters shall be developed as an application of the micro-TPC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا