ترغب بنشر مسار تعليمي؟ اضغط هنا

The Bieri-Neumann-Strebel Invariant of the Pure Symmetric Automorphisms of a Right-Angled Artin Group

118   0   0.0 ( 0 )
 نشر من قبل Nicholas Koban
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We compute the BNS-invariant for the pure symmetric automorphism groups of right-angled Artin groups. We use this calculation to show that the pure symmetric automorphism group of a right-angled Artin group is itself not a right-angled Artin group provided that its defining graph contains a separating intersection of links.



قيم البحث

اقرأ أيضاً

We calculate the Bieri-Neumann-Strebel-Renz invariant $Sigma^1(G)$ for even Artin groups $G$ with underlying graph $Gamma$ such that if there is a closed reduced path in $Gamma$ with all labels bigger than 2 then the length of such path is always odd . We show that $Sigma^1(G)^c$ is a rationally defined spherical polyhedron.
The Tits Conjecture, proved by Crisp and Paris, states that squares of the standard generators of any Artin group generate an obvious right-angled Artin subgroup. We consider a larger set of elements consisting of all the centers of the irreducible s pherical special subgroups of the Artin group, and conjecture that sufficiently large powers of those elements generate an obvious right-angled Artin subgroup. This alleged right-angled Artin subgroup is in some sense as large as possible; its nerve is homeomorphic to the nerve of the ambient Artin group. We verify this conjecture for the class of locally reducible Artin groups, which includes all $2$-dimensional Artin groups, and for spherical Artin groups of any type other than $E_6$, $E_7$, $E_8$. We use our results to conclude that certain Artin groups contain hyperbolic surface subgroups, answering questions of Gordon, Long and Reid.
114 - M. Hull 2021
We show that if a right-angled Artin group $A(Gamma)$ has a non-trivial, minimal action on a tree $T$ which is not a line, then $Gamma$ contains a separating subgraph $Lambda$ such that $A(Lambda)$ stabilizes an edge in $T$.
We consider the question of which right-angled Artin groups contain closed hyperbolic surface subgroups. It is known that a right-angled Artin group $A(K)$ has such a subgroup if its defining graph $K$ contains an $n$-hole (i.e. an induced cycle of l ength $n$) with $ngeq 5$. We construct another eight forbidden graphs and show that every graph $K$ on $le 8$ vertices either contains one of our examples, or contains a hole of length $ge 5$, or has the property that $A(K)$ does not contain hyperbolic closed surface subgroups. We also provide several sufficient conditions for a RAAG to contain no hyperbolic surface subgroups. We prove that for one of these forbidden subgraphs $P_2(6)$, the right angled Artin group $A(P_2(6))$ is a subgroup of a (right angled Artin) diagram group. Thus we show that a diagram group can contain a non-free hyperbolic subgroup answering a question of Guba and Sapir. We also show that fundamental groups of non-orientable surfaces can be subgroups of diagram groups. Thus the first integral homology of a subgroup of a diagram group can have torsion (all homology groups of all diagram groups are free Abelian by a result of Guba and Sapir).
We characterize when (and how) a Right-Angled Artin group splits nontrivially over an abelian subgroup.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا