ترغب بنشر مسار تعليمي؟ اضغط هنا

Abelian splittings of Right-Angled Artin Groups

257   0   0.0 ( 0 )
 نشر من قبل Daniel Groves
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We characterize when (and how) a Right-Angled Artin group splits nontrivially over an abelian subgroup.



قيم البحث

اقرأ أيضاً

114 - M. Hull 2021
We show that if a right-angled Artin group $A(Gamma)$ has a non-trivial, minimal action on a tree $T$ which is not a line, then $Gamma$ contains a separating subgraph $Lambda$ such that $A(Lambda)$ stabilizes an edge in $T$.
The Tits Conjecture, proved by Crisp and Paris, states that squares of the standard generators of any Artin group generate an obvious right-angled Artin subgroup. We consider a larger set of elements consisting of all the centers of the irreducible s pherical special subgroups of the Artin group, and conjecture that sufficiently large powers of those elements generate an obvious right-angled Artin subgroup. This alleged right-angled Artin subgroup is in some sense as large as possible; its nerve is homeomorphic to the nerve of the ambient Artin group. We verify this conjecture for the class of locally reducible Artin groups, which includes all $2$-dimensional Artin groups, and for spherical Artin groups of any type other than $E_6$, $E_7$, $E_8$. We use our results to conclude that certain Artin groups contain hyperbolic surface subgroups, answering questions of Gordon, Long and Reid.
We consider the question of which right-angled Artin groups contain closed hyperbolic surface subgroups. It is known that a right-angled Artin group $A(K)$ has such a subgroup if its defining graph $K$ contains an $n$-hole (i.e. an induced cycle of l ength $n$) with $ngeq 5$. We construct another eight forbidden graphs and show that every graph $K$ on $le 8$ vertices either contains one of our examples, or contains a hole of length $ge 5$, or has the property that $A(K)$ does not contain hyperbolic closed surface subgroups. We also provide several sufficient conditions for a RAAG to contain no hyperbolic surface subgroups. We prove that for one of these forbidden subgraphs $P_2(6)$, the right angled Artin group $A(P_2(6))$ is a subgroup of a (right angled Artin) diagram group. Thus we show that a diagram group can contain a non-free hyperbolic subgroup answering a question of Guba and Sapir. We also show that fundamental groups of non-orientable surfaces can be subgroups of diagram groups. Thus the first integral homology of a subgroup of a diagram group can have torsion (all homology groups of all diagram groups are free Abelian by a result of Guba and Sapir).
We study atomic right-angled Artin groups -- those whose defining graph has no cycles of length less than five, and no separating vertices, separating edges, or separating vertex stars. We show that these groups are not quasi-isometrically rigid, but that an intermediate form of rigidity does hold. We deduce from this that two atomic groups are quasi-isometric iff they are isomorphic.
172 - Ashot Minasyan 2014
For each natural number $d$ we construct a $3$-generated group $H_d$, which is a subdirect product of free groups, such that the cohomological dimension of $H_d$ is $d$. Given a group $F$ and a normal subgroup $N lhd F$ we prove that any right angled Artin group containing the special HNN-extension of $F$ with respect to $N$ must also contain $F/N$. We apply this to construct, for every $d in mathbb{N}$, a $4$-generated group $G_d$, embeddable into a right angled Artin group, such that the cohomological dimension of $G_d$ is $2$ but the cohomological dimension of any right angled Artin group, containing $G_d$, is at least $d$. These examples are used to show the non-existence of certain universal right angled Artin groups. We also investigate finitely presented subgroups of direct products of limit groups. In particular we show that for every $nin mathbb{N}$ there exists $delta(n) in mathbb{N}$ such that any $n$-generated finitely presented subgroup of a direct product of finitely many free groups embeds into the $delta(n)$-th direct power of the free group of rank $2$. As another corollary we derive that any $n$-generated finitely presented residually free group embeds into the direct product of at most $delta(n)$ limit groups.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا