ترغب بنشر مسار تعليمي؟ اضغط هنا

Constructing modular categories from orbifold data

212   0   0.0 ( 0 )
 نشر من قبل Vincentas Mulevi\\v{c}ius
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In Carqueville et al., arXiv:1809.01483, the notion of an orbifold datum $mathbb{A}$ in a modular fusion category $mathcal{C}$ was introduced as part of a generalised orbifold construction for Reshetikhin-Turaev TQFTs. In this paper, given a simple orbifold datum $mathbb{A}$ in $mathcal{C}$, we introduce a ribbon category $mathcal{C}_{mathbb{A}}$ and show that it is again a modular fusion category. The definition of $mathcal{C}_{mathbb{A}}$ is motivated by properties of Wilson lines in the generalised orbifold. We analyse two examples in detail: (i) when $mathbb{A}$ is given by a simple commutative $Delta$-separable Frobenius algebra $A$ in $mathcal{C}$; (ii) when $mathbb{A}$ is an orbifold datum in $mathcal{C} = operatorname{Vect}$, built from a spherical fusion category $mathcal{S}$. We show that in case (i), $mathcal{C}_{mathbb{A}}$ is ribbon-equivalent to the category of local modules of $A$, and in case (ii), to the Drinfeld centre of $mathcal{S}$. The category $mathcal{C}_{mathbb{A}}$ thus unifies these two constructions into a single algebraic setting.



قيم البحث

اقرأ أيضاً

We study novel invariants of modular categories that are beyond the modular data, with an eye towards a simple set of complete invariants for modular categories. Our focus is on the $W$-matrix--the quantum invariant of a colored framed Whitehead link from the associated TQFT of a modular category. We prove that the $W$-matrix and the set of punctured $S$-matrices are strictly beyond the modular data $(S,T)$. Whether or not the triple $(S,T,W)$ constitutes a complete invariant of modular categories remains an open question.
A generalised orbifold of a defect TQFT $mathcal{Z}$ is another TQFT $mathcal{Z}_{mathcal{A}}$ obtained by performing a state sum construction internal to $mathcal{Z}$. As an input it needs a so-called orbifold datum $mathcal{A}$ which is used to lab el stratifications coming from duals of triangulations and is subject to conditions encoding the invariance under Pachner moves. In this paper we extend the construction of generalised orbifolds of $3$-dimensional TQFTs to include line defects. The result is a TQFT acting on 3-bordisms with embedded ribbon graphs labelled by a ribbon category $mathcal{W}_{mathcal{A}}$ that we canonically associate to $mathcal{Z}$ and $mathcal{A}$. We also show that for special orbifold data, the internal state sum construction can be performed on more general skeletons than those dual to triangulations. This makes computations with $mathcal{Z}_{mathcal{A}}$ easier to handle in specific examples.
Using M-theory in physics, Cho, Gang, and Kim (JHEP 2020, 115 (2020) ) recently outlined a program that connects two parallel subjects of three dimensional manifolds, namely, geometric topology and quantum topology. They suggest that classical topolo gical invariants such as Chern-Simons invariants of $text{SL}(2,mathbb{C})$-flat connections and adjoint Reidemeister torsions of a three manifold can be packaged together to produce a $(2+1)$-topological quantum field theory, which is essentially equivalent to a modular tensor category. It is further conjectured that every modular tensor category can be obtained from a three manifold and a semi-simple Lie group. In this paper, we study this program mathematically, and provide strong support for the feasibility of such a program. The program produces an algorithm to generate the potential modular $T$-matrix and the quantum dimensions of a candidate modular data. The modular $S$-matrix follows from essentially a trial-and-error procedure. We find modular tensor categories that realize candidate modular data constructed from Seifert fibered spaces and torus bundles over the circle that reveal many subtleties in the program. We make a number of improvements to the program based on our computations. Our main result is a mathematical construction of a premodular category from each Seifert fibered space with three singular fibers and a family of torus bundles over the circle with Thurston SOL geometry. The premodular categories from Seifert fibered spaces are related to Temperley-Lieb-Jones categories and the ones from torus bundles over the circle are related to metaplectic categories. We conjecture that a resulting premodular category is modular if and only if the three manifold is a $mathbb{Z}_2$-homology sphere and condensation of bosons in premodular categories leads to either modular or super-modular categories.
We investigate the kernel space of an integral operator M(g) depending on the spin g and describing an elliptic Fourier transformation. The operator M(g) is an intertwiner for the elliptic modular double formed from a pair of Sklyanin algebras with t he parameters $eta$ and $tau$, Im$ tau>0$, Im$eta>0$. For two-dimensional lattices $g=neta + mtau/2$ and $g=1/2+neta + mtau/2$ with incommensurate $1, 2eta,tau$ and integers $n,m>0$, the operator M(g) has a finite-dimensional kernel that consists of the products of theta functions with two different modular parameters and is invariant under the action of generators of the elliptic modular double.
The definitions of the $n^{th}$ Gauss sum and the associated $n^{th}$ central charge are introduced for premodular categories $mathcal{C}$ and $ninmathbb{Z}$. We first derive an expression of the $n^{th}$ Gauss sum of a modular category $mathcal{C}$, for any integer $n$ coprime to the order of the T-matrix of $mathcal{C}$, in terms of the first Gauss sum, the global dimension, the twist and their Galois conjugates. As a consequence, we show for these $n$, the higher Gauss sums are $d$-numbers and the associated central charges are roots of unity. In particular, if $mathcal{C}$ is the Drinfeld center of a spherical fusion category, then these higher central charges are 1. We obtain another expression of higher Gauss sums for de-equivariantization and local module constructions of appropriate premodular and modular categories. These expressions are then applied to prove the Witt invariance of higher central charges for pseudounitary modular categories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا