ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin polarization, dephasing and photoinduced spin diffusion in (110)-grown two-dimensional electron systems

161   0   0.0 ( 0 )
 نشر من قبل Tobias Korn
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the optically induced spin polarization, spin dephasing and diffusion in several high-mobility two-dimensional electron systems, which are embedded in GaAs quantum wells grown on (110)-oriented substrates. The experimental techniques comprise a two-beam magneto-optical spectroscopy system and polarization-resolved photoluminescence. Under weak excitation conditions at liquid-helium temperatures, we observe spin lifetimes above 100 ns in one of our samples, which are reduced with increasing excitation density due to additional, hole-mediated, spin dephasing. The spin dynamic is strongly influenced by the carrier density and the ionization of remote donors, which can be controlled by temperature and above-barrier illumination. The absolute value of the average electron spin polarization in the samples is directly observable in the circular polarization of photoluminescence collected under circularly polarized excitation and reaches values of about 5 percent. Spin diffusion is studied by varying the distance between pump and probe beams in micro-spectroscopy experiments. We observe diffusion lengths above 100 $mu$m and, at high excitation intensity, a nonmonotonic dependence of the spin polarization on the pump-probe distance.



قيم البحث

اقرأ أيضاً

We have studied spin dephasing and spin diffusion in a high-mobility two-dimensional electron system, embedded in a GaAs/AlGaAs quantum well grown in the [110] direction, by a two-beam Hanle experiment. For very low excitation density, we observe spi n lifetimes of more than 16 ns, which rapidly decrease as the pump intensity is increased. Two mechanisms contribute to this decrease: the optical excitation produces holes, which lead to a decay of electron spin via the Bir-Aranov-Pikus mechanism and recombination with spin-polarized electrons. By scanning the distance between the pump and probe beams, we observe the diffusion of spin-polarized electrons over more than 20 microns. For high pump intensity, the spin polarization in a distance of several microns from the pump beam is larger than at the pump spot, due to the reduced influence of photogenerated holes.
Symmetry and spin dephasing of in (110)-grown GaAs quantum wells (QWs) are investigated applying magnetic field induced photogalvanic effect (MPGE) and time-resolved Kerr rotation. We show that MPGE provides a tool to probe the symmetry of (110)-grow n quantum wells. The photocurrent is only observed for asymmetric structures but vanishes for symmetric QWs. Applying Kerr rotation we prove that in the latter case the spin relaxation time is maximal, therefore these structures set upper limit of spin dephasing in GaAs QWs. We also demonstrate that structure inversion asymmetry can be controllably tuned to zero by variation of delta-doping layer position.
We develop a microscopic theory of spin relaxation of a two-dimensional electron gas in quantum wells with anisotropic electron scattering. Both precessional and collision-dominated regimes of spin dynamics are studied. It is shown that, in quantum w ells with noncentrosymmetric scatterers, the in-plane and out-of-plane spin components are coupled: spin dephasing of carriers initially polarized along the quantum well normal leads to the emergence of an in-plane spin component even in the case of isotropic spin-orbit splitting. In the collision-dominated regime, the spin-relaxation-rate tensor is expressed in terms of the electric conductivity tensor. We also study the effect of an in-plane and out-of-plane external magnetic field on spin dephasing and show that the field dependence of electron spin can be very intricate.
Current-induced spin polarization (CISP) is rederived in ballistic spin-orbit-coupled electron systems, based on equilibrium statistical mechanics. A simple and useful picture is correspondingly proposed to help understand the CISP and predict the po larization direction. Nonequilibrium Landauer-Keldysh formalism is applied to demonstrate the validity of the statistical picture, taking the linear Rashba-Dresselhaus [001] two-dimensional system as a specific example. Spin densities induced by the CISP in semiconductor heterostructures and in metallic surface states are compared, showing that the CISP increases with the spin splitting strength and hence suggesting that the CISP should be more observable on metal and semimetal surfaces due to the discovered strong Rashba splitting. An application of the CISP designed to generate a spin-Hall pattern in the inplane, instead of the out-of-plane, component is also proposed.
108 - P.S. Alekseev , M.M. Glazov , 2014
We study the tunneling of conduction electrons through a (110)-oriented single-barrier heterostructure grown from III-V semiconductor compounds. It is shown that, due to low spatial symmetry of such a barrier, the tunneling current through the barrie r leads to an electron spin polarization. The inverse effect, generation of a direct tunneling current by spin polarized electrons, is also predicted. We develop the microscopic theory of the effects and show that the spin polarization emerges due to the combined action of the Dresselhaus spin-orbit coupling within the barrier and the Rashba spin-orbit coupling at the barrier interfaces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا