ﻻ يوجد ملخص باللغة العربية
We have studied spin dephasing and spin diffusion in a high-mobility two-dimensional electron system, embedded in a GaAs/AlGaAs quantum well grown in the [110] direction, by a two-beam Hanle experiment. For very low excitation density, we observe spin lifetimes of more than 16 ns, which rapidly decrease as the pump intensity is increased. Two mechanisms contribute to this decrease: the optical excitation produces holes, which lead to a decay of electron spin via the Bir-Aranov-Pikus mechanism and recombination with spin-polarized electrons. By scanning the distance between the pump and probe beams, we observe the diffusion of spin-polarized electrons over more than 20 microns. For high pump intensity, the spin polarization in a distance of several microns from the pump beam is larger than at the pump spot, due to the reduced influence of photogenerated holes.
We study the optically induced spin polarization, spin dephasing and diffusion in several high-mobility two-dimensional electron systems, which are embedded in GaAs quantum wells grown on (110)-oriented substrates. The experimental techniques compris
Symmetry and spin dephasing of in (110)-grown GaAs quantum wells (QWs) are investigated applying magnetic field induced photogalvanic effect (MPGE) and time-resolved Kerr rotation. We show that MPGE provides a tool to probe the symmetry of (110)-grow
We develop a microscopic theory of spin relaxation of a two-dimensional electron gas in quantum wells with anisotropic electron scattering. Both precessional and collision-dominated regimes of spin dynamics are studied. It is shown that, in quantum w
Understanding the spin dynamics in semiconductor heterostructures is highly important for future semiconductor spintronic devices. In high-mobility two-dimensional electron systems (2DES), the spin lifetime strongly depends on the initial degree of s
We investigated the spin dynamics of two-dimensional electrons in (001) GaAs/AlGaAs heterostructure using the time resolved Kerr rotation technique under a transverse magnetic field. The in-plane spin lifetime is found to be anisotropic below 150k du