ترغب بنشر مسار تعليمي؟ اضغط هنا

Symmetry and spin dephasing in (110)-grown quantum wells

77   0   0.0 ( 0 )
 نشر من قبل Sergey Ganichev
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Symmetry and spin dephasing of in (110)-grown GaAs quantum wells (QWs) are investigated applying magnetic field induced photogalvanic effect (MPGE) and time-resolved Kerr rotation. We show that MPGE provides a tool to probe the symmetry of (110)-grown quantum wells. The photocurrent is only observed for asymmetric structures but vanishes for symmetric QWs. Applying Kerr rotation we prove that in the latter case the spin relaxation time is maximal, therefore these structures set upper limit of spin dephasing in GaAs QWs. We also demonstrate that structure inversion asymmetry can be controllably tuned to zero by variation of delta-doping layer position.

قيم البحث

اقرأ أيضاً

We study the optically induced spin polarization, spin dephasing and diffusion in several high-mobility two-dimensional electron systems, which are embedded in GaAs quantum wells grown on (110)-oriented substrates. The experimental techniques compris e a two-beam magneto-optical spectroscopy system and polarization-resolved photoluminescence. Under weak excitation conditions at liquid-helium temperatures, we observe spin lifetimes above 100 ns in one of our samples, which are reduced with increasing excitation density due to additional, hole-mediated, spin dephasing. The spin dynamic is strongly influenced by the carrier density and the ionization of remote donors, which can be controlled by temperature and above-barrier illumination. The absolute value of the average electron spin polarization in the samples is directly observable in the circular polarization of photoluminescence collected under circularly polarized excitation and reaches values of about 5 percent. Spin diffusion is studied by varying the distance between pump and probe beams in micro-spectroscopy experiments. We observe diffusion lengths above 100 $mu$m and, at high excitation intensity, a nonmonotonic dependence of the spin polarization on the pump-probe distance.
We have studied spin dephasing and spin diffusion in a high-mobility two-dimensional electron system, embedded in a GaAs/AlGaAs quantum well grown in the [110] direction, by a two-beam Hanle experiment. For very low excitation density, we observe spi n lifetimes of more than 16 ns, which rapidly decrease as the pump intensity is increased. Two mechanisms contribute to this decrease: the optical excitation produces holes, which lead to a decay of electron spin via the Bir-Aranov-Pikus mechanism and recombination with spin-polarized electrons. By scanning the distance between the pump and probe beams, we observe the diffusion of spin-polarized electrons over more than 20 microns. For high pump intensity, the spin polarization in a distance of several microns from the pump beam is larger than at the pump spot, due to the reduced influence of photogenerated holes.
Anomalous spin Hall effects that belong to the intrinsic type in Dresselhaus (110) quantum wells are discussed. For the out-of-plane spin component, antisymmetric current-induced spin polarization induces opposite spin Hall accumulation, even though there is no spin-orbit force due to Dresselhaus (110) coupling. A surprising feature of this spin Hall induction is that the spin accumulation sign does not change upon bias reversal. Contribution to the spin Hall accumulation from the spin Hall induction and the spin deviation due to intrinsic spin-orbit force as well as extrinsic spin scattering, can be straightforwardly distinguished simply by reversing the bias. For the inplane component, inclusion of a weak Rashba coupling leads to a new type of $S_y$ intrinsic spin Hall effect solely due to spin-orbit-force-driven spin separation.
We study the electron spin relaxation in both symmetric and asymmetric GaAs/AlGaAs quantum wells (QWs) grown on (110) substrates in an external magnetic field B applied along the QW normal. The spin polarization is induced by circularly polarized lig ht and detected by time-resolved Kerr rotation technique. In the asymmetric structure, where a {delta}-doped layer on one side of the QW produces the Rashba contribution to the conduction-band spin-orbit splitting, the lifetime of electron spins aligned along the growth axis exhibits an anomalous dependence on B in the range 0<B<0.5 T; this results from the interplay between the Dresselhaus and Rashba effective fields which are perpendicular to each other. For larger magnetic fields, the spin lifetime increases, which is the consequence of the cyclotron motion of the electrons and is also observed in (001)-grown quantum wells. The experimental results are in agreement with the calculation of the spin lifetimes in (110)- grown asymmetric quantum wells described by the point group Cs where the growth direction is not the principal axis of the spin-relaxation-rate tensor.
We show that for lattice-mismatched zinc-blende-type (110)-grown quantum wells a significant contribution to the zero-magnetic-field spin splitting of electron subbands comes from strain-induced spin-orbit coupling. Combining envelope function theory and atomistic tight-binding approach we calculate spin-orbit splitting constants for realistic quantum wells. It is found that the strain due to lattice mismatch in conventional GaAs/AlGaAs structures may noticeably modify the spin splitting while in InGaAs/GaAs structures it plays a major role and may even change the sign of the spin splitting constant.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا