ترغب بنشر مسار تعليمي؟ اضغط هنا

A massive, dead disk galaxy in the early Universe

201   0   0.0 ( 0 )
 نشر من قبل Sune Toft
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

At redshift z = 2, when the Universe was just three billion years old, half of the most massive galaxies were extremely compact and had already exhausted their fuel for star formation(1-4). It is believed that they were formed in intense nuclear starbursts and that they ultimately grew into the most massive local elliptical galaxies seen today, through mergers with minor companions(5,6), but validating this picture requires higher-resolution observations of their centres than is currently possible. Magnification from gravitational lensing offers an opportunity to resolve the inner regions of galaxies(7). Here we report an analysis of the stellar populations and kinematics of a lensed z = 2.1478 compact galaxy, which surprisingly turns out to be a fast-spinning, rotationally supported disk galaxy. Its stars must have formed in a disk, rather than in a merger-driven nuclear starburst(8). The galaxy was probably fed by streams of cold gas, which were able to penetrate the hot halo gas until they were cut off by shock heating from the dark matter halo(9). This result confirms previous indirect indications(10-13) that the first galaxies to cease star formation must have gone through major changes not just in their structure, but also in their kinematics, to evolve into present-day elliptical galaxies.

قيم البحث

اقرأ أيضاً

We search the five CANDELS fields (COSMOS, EGS, GOODS-North, GOODS-South and UDS) for passively evolving a.k.a. red and dead massive galaxies in the first 2 Gyr after the Big Bang, integrating and updating the work on GOODS-South presented in our pre vious paper. We perform SED-fitting on photometric data, with top-hat star-formation histories to model an early and abrupt quenching, and using a probabilistic approach to select only robust candidates. Using libraries without (with) spectral lines emission, starting from a total of more than 20,000 $z>3$ sources we end up with 102 (40) candidates, including one at $z=6.7$. This implies a minimal number density of $1.73 pm 0.17 times 10^{-5}$ ($6.69 pm 1.08 times 10^{-6}$) Mpc$^{-3}$ for $3<z<5$; applying a correction factor to account for incompleteness yields $2.30 pm 0.20 times 10^{-5}$. We compare these values with those from five recent hydrodynamical cosmological simulations, finding a reasonable agreement at $z<4$; tensions arise at earlier epochs. Finally, we use the star-formation histories from the best-fit models to estimate the contribution of the high-redshift passive galaxies to the global Star Formation Rate Density during their phase of activity, finding that they account for $sim5-10%$ of the total star formation at $3<z<8$, despite being only $sim0.5%$ of the total in number. The resulting picture is that early and strong star formation activity, building massive galaxies on short timescales and followed by a quick and abrupt quenching, is a rare but crucial phenomenon in the early Universe: the evolution of the cosmos must be heavily influenced by the short but powerful activity of these pristine monsters.
In the local (redshift z~0) Universe, collisional ring galaxies make up only ~0.01% of galaxies and are formed by head-on galactic collisions that trigger radially propagating density waves. These striking systems provide key snapshots for dissecting galactic disks and are studied extensively in the local Universe. However, not much is known about distant (z>0.1) collisional rings. Here we present a detailed study of a ring galaxy at a look-back time of 10.8 Gyr (z=2.19). Compared with our Milky Way, this galaxy has a similar stellar mass, but has a stellar half-light radius that is 1.5-2.2 times larger and is forming stars 50 times faster. The large, diffuse stellar light outside the star-forming ring, combined with a radial velocity on the ring and an intruder galaxy nearby, provides evidence for this galaxy hosting a collisional ring. If the ring is secularly evolved, the implied large bar in a giant disk would be inconsistent with the current understanding of the earliest formation of barred spirals. Contrary to previous predictions, this work suggests that massive collisional rings were as rare 11 Gyr ago as they are today. Our discovery offers a unique pathway for studying density waves in young galaxies, as well as constraining the cosmic evolution of spiral disks and galaxy groups.
Recent high-resolution simulations demonstrate that disks around primordial protostars easily fragment in the accretion phase before the protostars accrete less than a solar mass. To understand why the gravitational instability generally causes the f ragmentation so early, we develop a one-dimensional (1D) non-steady model of the circumstellar disk that takes the mass supply from an accretion envelope into account. We also compare the model results to a three-dimensional (3D) numerical simulation performed with a code employing the adaptive mesh refinement. Our model shows that the self-gravitating disk, through which the Toomre $Q$ parameter is nearly constant at $Q sim 1$, gradually spreads as the disk is fed by the gas infalling from the envelope. We further find that the accretion rate onto the star is an order of magnitude smaller than the mass supply rate onto the disk. This discrepancy makes the disk more massive than the protostar in an early evolutionary stage. Most of the infalling gas is used to extend the outer part of the self-gravitating disk rather than transferred inward toward the star through the disk. We find that similar evolution also occurs in the 3D simulation, where the disk becomes three times more massive than the star before the first fragmentation occurs. Our 1D disk model well explains the evolution of the disk-to-star mass ratio observed in the simulation. We argue that the formation of such a massive disk leads to the early disk fragmentation.
Galaxies grow inefficiently, with only a few percent of the available gas converted into stars each free-fall time. Feedback processes, such as outflowing winds driven by radiation pressure, supernovae or supermassive black hole accretion, can act to halt star formation if they heat or expel the gas supply. We report a molecular outflow launched from a dust-rich star-forming galaxy at redshift 5.3, one billion years after the Big Bang. The outflow reaches velocities up to 800 km/s relative to the galaxy, is resolved into multiple clumps, and carries mass at a rate within a factor of two of the star formation rate. Our results show that molecular outflows can remove a large fraction of the gas available for star formation from galaxies at high redshift.
We report new observations of the galaxy UGC8802 obtained through GASS, the GALEX Arecibo SDSS Survey, which show this galaxy to be in a remarkable evolutionary state. UGC8802 (GASS35981) is a disk galaxy with stellar mass M*=2x10^10 Msolar which app ears to contain an additional 2.1x10^10 Msolar of HI gas. New millimeter observations with the IRAM 30m telescope indicate a molecular gas mass only a tenth this large. Using deep long-slit spectroscopy, we examine the spatially resolved star formation rate and metallicity profiles of GASS35981 for clues to its history. We find that the star formation surface density in this galaxy is low (Sigma_SFR=0.003 Msolar/yr/kpc^2) and that the star formation is spread remarkably evenly across the galaxy. The low molecular gas masses measured in our three IRAM pointings are largely consistent with the total star formation measured within the same apertures. Our MMT long-slit spectrum reveals a sharp drop in metallicity in the outer disk of GASS35981. The ratio of current star formation rate to existing stellar mass surface density in the outer disk is extremely high, implying that all the stars must have formed within the past ~1Gyr. At current star formation rates, however, GASS35981 will not consume its HI reservoir for another 5-7 Gyr. Despite its exceptionally large gas fraction for a galaxy this massive, GASS35981 has a regular rotation curve and exhibits no sign of a recent interaction or merger. We speculate that GASS35981 may have acquired its gas directly from the inter-galactic medium, and that it and other similar galaxies identified in the GASS survey may provide rare local glimpses of gas accretion processes that were more common during the prime epoch of disk galaxy formation at z~1.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا