ترغب بنشر مسار تعليمي؟ اضغط هنا

Extensions of natural Hamiltonians

116   0   0.0 ( 0 )
 نشر من قبل Giovanni Rastelli
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Giovanni Rastelli




اسأل ChatGPT حول البحث

Given an n-dimensional natural Hamiltonian L on a Riemannian or pseudo-Riemannian manifold, we call extension of L the n+1 dimensional Hamiltonian $H=frac 12 p_u^2+alpha(u)L+beta(u)$ with new canonically conjugated coordinates $(u,p_u)$. For suitable L, the functions $alpha$ and $beta$ can be chosen depending on any natural number m such that H admits an extra polynomial first integral in the momenta of degree m, explicitly determined in the form of the m-th power of a differential operator applied to a certain function of coordinates and momenta. In particular, if L is maximally superintegrable (MS) then H is MS also. Therefore, the extension procedure allows the creation of new superintegrable systems from old ones. For m=2, the extra first integral generated by the extension procedure determines a second-order symmetry operator of a Laplace-Beltrami quantization of H, modified by taking in account the curvature of the configuration manifold. The extension procedure can be applied to several Hamiltonian systems, including the three-body Calogero and Wolfes systems (without harmonic term), the Tremblay-Turbiner-Winternitz system and n-dimensional anisotropic harmonic oscillators. We propose here a short review of the known results of the theory and some previews of new ones.



قيم البحث

اقرأ أيضاً

The concept of extended Hamiltonian systems allows the geometrical interpretation of several integrable and superintegrable systems with polynomial first integrals of degree depending on a rational parameter. Until now, the procedure of extension has been applied only in the case of natural Hamiltonians. In this article, we give several examples of application to non-natural Hamiltonians, such as the two point-vortices, the Lotka-Volterra and some quartic in the momenta Hamiltonians, obtaining effectively extended Hamiltonians in some cases and failing in others. We briefly discuss the reasons of these results.
We compute the deficiency spaces of operators of the form $H_A{hat{otimes}} I + I{hat{otimes}} H_B$, for symmetric $H_A$ and self-adjoint $H_B$. This enables us to construct self-adjoint extensions (if they exist) by means of von Neumanns theory. The structure of the deficiency spaces for this case was asserted already by Ibort, Marmo and Perez-Pardo, but only proven under the restriction of $H_B$ having discrete, non-degenerate spectrum.
363 - B.G.Konopelchenko , F.Magri 2006
Interpretation of dispersionless integrable hierarchies as equations of coisotropic deformations for certain algebras and other algebraic structures like Jordan triple systInterpretation of dispersionless integrable hierarchies as equations of coisot ropic deformations for certain algebras and other algebraic structures like Jordan triple systems is discussed. Several generalizations are considered. Stationary reductions of the dispersionless integrable equations are shown to be connected with the dynamical systems on the plane completely integrable on a fixed energy level. ems is discussed. Several generalizations are considered. Stationary reductions of the dispersionless integrable equations are shown to be connected with the dynamical systems on the plane completely integrable on a fixed energy level.
We give natural extensions for the alpha-Rosen continued fractions of Dajani et al. for a set of small alpha values by appropriately adding and deleting rectangles from the region of the natural extension for the standard Rosen fractions. It follows that the underlying maps have equal entropy.
We propose a new way of defining and studying operads on multigraphs and similar objects. For this purpose, we use the combinatorial species setting. We study in particular two operads obtained with our method. The former is a direct generalization o f the Kontsevich-Willwacher operad. This operad can be seen as a canonical operad on multigraphs, and has many interesting suboperads. The latter operad is a natural extension of the pre-Lie operad in a sense developed here and it is related to the multigraph operad. We also present various results on some of the finitely generated suboperads of the multigraph operad and establish links between them and the commutative operad and the commutative magmatic operad.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا