ﻻ يوجد ملخص باللغة العربية
The concept of extended Hamiltonian systems allows the geometrical interpretation of several integrable and superintegrable systems with polynomial first integrals of degree depending on a rational parameter. Until now, the procedure of extension has been applied only in the case of natural Hamiltonians. In this article, we give several examples of application to non-natural Hamiltonians, such as the two point-vortices, the Lotka-Volterra and some quartic in the momenta Hamiltonians, obtaining effectively extended Hamiltonians in some cases and failing in others. We briefly discuss the reasons of these results.
A procedure to extend a superintegrable system into a new superintegrable one is systematically tested for the known systems on $mathbb E^2$ and $mathbb S^2$ and for a family of systems defined on constant curvature manifolds. The procedure results e
Given an n-dimensional natural Hamiltonian L on a Riemannian or pseudo-Riemannian manifold, we call extension of L the n+1 dimensional Hamiltonian $H=frac 12 p_u^2+alpha(u)L+beta(u)$ with new canonically conjugated coordinates $(u,p_u)$. For suitable
We consider the Landau Hamiltonian $H_0$, self-adjoint in $L^2({mathbb R^2})$, whose spectrum consists of an arithmetic progression of infinitely degenerate positive eigenvalues $Lambda_q$, $q in {mathbb Z}_+$. We perturb $H_0$ by a non-local potenti
A novel family of exactly solvable quantum systems on curved space is presented. The family is the quantum version of the classical Perlick family, which comprises all maximally superintegrable 3-dimensional Hamiltonian systems with spherical symmetr
In this work we elaborate on a previous result relating the partition function of the six-vertex model with domain-wall boundary conditions to eigenvalues of a transfer matrix. More precisely, we express the aforementioned partition function as a det