ﻻ يوجد ملخص باللغة العربية
Techniques based on $n$-particle irreducible effective actions can be used to study systems where perturbation theory does not apply. The main advantage, relative to other non-perturbative continuum methods, is that the hierarchy of integral equations that must be solved truncates at the level of the action, and no additional approximations are needed. The main problem with the method is renormalization, which until now could only be done at the lowest ($n$=2) level. In this paper we show how to obtain renormalized results from an $n$-particle irreducible effective action at any order. We consider a symmetric scalar theory with quartic coupling in four dimensions and show that the 4 loop 4-particle-irreducible calculation can be renormalized using a renormalization group method. The calculation involves one bare mass and one bare coupling constant which are introduced at the level of the Lagrangian, and cannot be done using any known method by introducing counterterms.
We review and present full detail of the Feynman diagram - based and heat-kernel method - based calculations of the simplest nonlocal form factors in the one-loop contributions of a massive scalar field. The paper has a pedagogical and introductory p
We consider a symmetric scalar theory with quartic coupling in 4-dimensions. We show that the 4 loop 2PI calculation can be done using a renormalization group method. The calculation involves one bare coupling constant which is introduced at the leve
Nonthermal fixed points represent basic properties of quantum field theories, in addition to vacuum or thermal equilibrium fixed points. The functional renormalization group on a closed real-time path provides a common framework for their description
We aim to optimize the functional form of the compactly supported smooth (CSS) regulator within the functional renormalization group (RG), in the framework of bosonized two-dimensional Quantum Electrodynamics (QED_2) and of the three-dimensional O(N=
We study the renormalization group flow of $mathbb{Z}_2$-invariant supersymmetric and non-supersymmetric scalar models in the local potential approximation using functional renormalization group methods. We focus our attention to the fixed points of