ترغب بنشر مسار تعليمي؟ اضغط هنا

Gradient flows driven by a non-smooth repulsive interaction potential

108   0   0.0 ( 0 )
 نشر من قبل Giovanni Bonaschi A.
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This thesis analyze the Wasserstein gradient flow of a functional defined as a double convolution of a non-smooth repulsive interaction potential. To be more precise, the potential under investigation has a -|x| behavior close to the origin. The already existent machinery of Wasserstein gradient flow is well posed for lambda-convex potential. In this case this property is lost, but it is proven that in the one dimensional case existence and uniqueness of the solution is still achieved.



قيم البحث

اقرأ أيضاً

We investigate a holographic model of superfluid flows with an external repulsive potential. When the strength of the potential is sufficiently weak, we analytically construct two steady superfluid flow solutions. As the strength of the potential is increased, the two solutions merge into a single critical solution at a critical strength, and then disappear above the critical value, as predicted by a saddle-node bifurcation theory. We also analyze the spectral function of fluctuations around the solutions under a certain decoupling approximation.
We adapt the arguments in the recent work of Duyckaerts, Landoulsi, and Roudenko to establish a scattering result at the sharp threshold for the $3d$ focusing cubic NLS with a repulsive potential. We treat both the case of short-range potentials as p reviously considered in the work of Hong, as well as the inverse-square potential, previously considered in the work of the authors.
We prove the equivalence between the notion of Wasserstein gradient flow for a one-dimensional nonlocal transport PDE with attractive/repulsive Newtonian potential on one side, and the notion of entropy solution of a Burgers-type scalar conservation law on the other. The solution of the former is obtained by spatially differentiating the solution of the latter. The proof uses an intermediate step, namely the $L^2$ gradient flow of the pseudo-inverse distribution function of the gradient flow solution. We use this equivalence to provide a rigorous particle-system approximation to the Wasserstein gradient flow, avoiding the regularization effect due to the singularity in the repulsive kernel. The abstract particle method relies on the so-called wave-front-tracking algorithm for scalar conservation laws. Finally, we provide a characterization of the sub-differential of the functional involved in the Wasserstein gradient flow.
We have created a functional framework for a class of non-metric gradient systems. The state space is a space of nonnegative measures, and the class of systems includes the Forward Kolmogorov equations for the laws of Markov jump processes on Polish spaces. This framework comprises a definition of a notion of solutions, a method to prove existence, and an archetype uniqueness result. We do this by using only the structure that is provided directly by the dissipation functional, which need not be homogeneous, and we do not appeal to any metric structure.
The ability to create dynamic deformations of micron-sized structures is relevant to a wide variety of applications such as adaptable optics, soft robotics, and reconfigurable microfluidic devices. In this work we examine non-uniform lubrication flow as a mechanism to create complex deformation fields in an elastic plate. We consider a Kirchoff-Love elasticity model for the plate and Hele-Shaw flow in a narrow gap between the plate and a parallel rigid surface. Based on linearization of the Reynolds equation, we obtain a governing equation which relates elastic deformations to gradients in non-homogenous physical properties of the fluid (e.g. body forces, viscosity, and slip velocity). We then focus on a specific case of non-uniform Helmholtz-Smoluchowski electroosmotic slip velocity, and provide a method for determining the zeta-potential distribution necessary to generate arbitrary static and quasi-static deformations of the elastic plate. Extending the problem to time-dependent solutions, we analyze transient effects on asymptotically static solutions, and finally provide a closed form solution for a Greens function for time periodic actuations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا