ترغب بنشر مسار تعليمي؟ اضغط هنا

Jump processes as Generalized Gradient Flows

83   0   0.0 ( 0 )
 نشر من قبل Oliver Tse
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We have created a functional framework for a class of non-metric gradient systems. The state space is a space of nonnegative measures, and the class of systems includes the Forward Kolmogorov equations for the laws of Markov jump processes on Polish spaces. This framework comprises a definition of a notion of solutions, a method to prove existence, and an archetype uniqueness result. We do this by using only the structure that is provided directly by the dissipation functional, which need not be homogeneous, and we do not appeal to any metric structure.

قيم البحث

اقرأ أيضاً

In this paper we present a variational technique that handles coarse-graining and passing to a limit in a unified manner. The technique is based on a duality structure, which is present in many gradient flows and other variational evolutions, and whi ch often arises from a large-deviations principle. It has three main features: (A) a natural interaction between the duality structure and the coarse-graining, (B) application to systems with non-dissipative effects, and (C) application to coarse-graining of approximate solutions which solve the equation only to some error. As examples, we use this technique to solve three limit problems, the overdamped limit of the Vlasov-Fokker-Planck equation and the small-noise limit of randomly perturbed Hamiltonian systems with one and with many degrees of freedom.
254 - Wenbo Li , Abner J. Salgado 2021
We develop the theory of fractional gradient flows: an evolution aimed at the minimization of a convex, l.s.c.~energy, with memory effects. This memory is characterized by the fact that the negative of the (sub)gradient of the energy equals the so-ca lled Caputo derivative of the state. We introduce the notion of energy solutions, for which we provide existence, uniqueness and certain regularizing effects. We also consider Lipschitz perturbations of this energy. For these problems we provide an a posteriori error estimate and show its reliability. This estimate depends only on the problem data, and imposes no constraints between consecutive time-steps. On the basis of this estimate we provide an a priori error analysis that makes no assumptions on the smoothness of the solution.
We develop the long-time analysis for gradient flow equations in metric spaces. In particular, we consider two notions of solutions for metric gradient flows, namely energy and generalized solutions. While the former concept coincides with the notion of curves of maximal slope, we introduce the latter to include limits of time-incremental approximations constructed via the Minimizing Movements approach. For both notions of solutions we prove the existence of the global attractor. Since the evolutionary problems we consider may lack uniqueness, we rely on the theory of generalized semiflows introduced by J.M. Ball. The notions of generalized and energy solutions are quite flexible and can be used to address gradient flows in a variety of contexts, ranging from Banach spaces to Wasserstein spaces of probability measures. We present applications of our abstract results by proving the existence of the global attractor for the energy solutions both of abstract doubly nonlinear evolution equations in reflexive Banach spaces, and of a class of evolution equations in Wasserstein spaces, as well as for the generalized solutions of some phase-change evolutions driven by mean curvature.
Classical gradient systems have a linear relation between rates and driving forces. In generalized gradient systems we allow for arbitrary relations derived from general non-quadratic dissipation potentials. This paper describes two natural origins f or these structures. A first microscopic origin of generalized gradient structures is given by the theory of large-deviation principles. While Markovian diffusion processes lead to classical gradient structures, Poissonian jump processes give rise to cosh-type dissipation potentials. A second origin arises via a new form of convergence, that we call EDP-convergence. Even when starting with classical gradient systems, where the dissipation potential is a quadratic functional of the rate, we may obtain a generalized gradient system in the evolutionary $Gamma$-limit. As examples we treat (i) the limit of a diffusion equation having a thin layer of low diffusivity, which leads to a membrane model, and (ii) the limit of diffusion over a high barrier, which gives a reaction-diffusion system.
This thesis analyze the Wasserstein gradient flow of a functional defined as a double convolution of a non-smooth repulsive interaction potential. To be more precise, the potential under investigation has a -|x| behavior close to the origin. The alre ady existent machinery of Wasserstein gradient flow is well posed for lambda-convex potential. In this case this property is lost, but it is proven that in the one dimensional case existence and uniqueness of the solution is still achieved.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا