ﻻ يوجد ملخص باللغة العربية
We have created a functional framework for a class of non-metric gradient systems. The state space is a space of nonnegative measures, and the class of systems includes the Forward Kolmogorov equations for the laws of Markov jump processes on Polish spaces. This framework comprises a definition of a notion of solutions, a method to prove existence, and an archetype uniqueness result. We do this by using only the structure that is provided directly by the dissipation functional, which need not be homogeneous, and we do not appeal to any metric structure.
In this paper we present a variational technique that handles coarse-graining and passing to a limit in a unified manner. The technique is based on a duality structure, which is present in many gradient flows and other variational evolutions, and whi
We develop the theory of fractional gradient flows: an evolution aimed at the minimization of a convex, l.s.c.~energy, with memory effects. This memory is characterized by the fact that the negative of the (sub)gradient of the energy equals the so-ca
We develop the long-time analysis for gradient flow equations in metric spaces. In particular, we consider two notions of solutions for metric gradient flows, namely energy and generalized solutions. While the former concept coincides with the notion
Classical gradient systems have a linear relation between rates and driving forces. In generalized gradient systems we allow for arbitrary relations derived from general non-quadratic dissipation potentials. This paper describes two natural origins f
This thesis analyze the Wasserstein gradient flow of a functional defined as a double convolution of a non-smooth repulsive interaction potential. To be more precise, the potential under investigation has a -|x| behavior close to the origin. The alre