ترغب بنشر مسار تعليمي؟ اضغط هنا

Sensitive dependence of isotope and isobar distribution of limiting temperatures on symmetry energy

205   0   0.0 ( 0 )
 نشر من قبل Li Ou
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The mass, isotope, and isobar distributions of limiting temperatures for finite nuclei are investigated by using a thermodynamics approach together with the Skyrme energy density functional. The relationship between the width of the isotope (isobar) distribution of limiting temperatures and the stiffness of the density dependence of the symmetry energy clearly is observed. The nuclear symmetry energy with smaller slope parameter $L_{rm{sym}}$ causes a wider the isotope (isobar) distribution of limiting temperatures. The widths of the isotope (isobar) distributions of limiting temperatures could be useful observables for exploring the information of the density dependence of the nuclear symmetry energy at finite temperatures.


قيم البحث

اقرأ أيضاً

In the framework of an equation of state (EoS) constructed from a momentum and density-dependent finite-range two-body effective interaction, the quantitative magnitudes of the different symmetry elements of infinite nuclear matter are explored. The parameters of this interaction are determined from well-accepted characteristic constants associated with homogeneous nuclear matter. The symmetry energy coefficient $a_2$, its density slope $L_0$, the symmetry incompressibility $K_delta $ as well as the density dependent incompressibility $K(rho )$ evaluated with this EoS are seen to be in good harmony with those obtained from other diverse perspectives. The higher order symmetry energy coefficients $a_4,~a_6$ etc are seen to be not very significant in the domain of densities relevant to finite nuclei, but gradually build up at supra-normal densities. The analysis carried with a Skyrme-inspired energy density functional obtained with the same input values for the empirical bulk data associated with nuclear matter yields nearly the same results.
The density dependence of the nuclear symmetry energy is inspected using the Statistical Multifragmentation Model with Skyrme effective interactions. The model consistently considers the expansion of the fragments volumes at finite temperature at the freeze-out stage. By selecting parameterizations of the Skyrme force that lead to very different equations of state for the symmetry energy, we investigate the sensitivity of different observables to the properties of the effective forces. Our results suggest that, in spite of being sensitive to the thermal dilation of the fragments volumes, it is difficult to distinguish among the Skyrme forces from the isoscaling analysis. On the other hand, the isotopic distribution of the emitted fragments turns out to be very sensitive to the force employed in the calculation.
134 - N. Wang , M. Liu , H. Jiang 2015
Based on the semi-classical extended Thomas-Fermi approach, we study the mass dependence of the symmetry energy coefficients of finite nuclei for 36 different Skyrme forces. The reference densities of both light and heavy nuclei are obtained. Eight m odels based on nuclear liquid drop concept and the Skyrme force SkM* suggest the symmetry energy coefficient $a_{rm sym}=22.90 pm 0.15 $ MeV at $A=260$, and the corresponding reference density is $rho_Asimeq 0.1$ fm$^{-3}$ at this mass region. The standard Skyrme energy density functionals give negative values for the coefficient of the $I^4$ term in the binding energy formula, whereas the latest Weizsacker-Skyrme formula and the experimental data suggest positive values for the coefficient.
75 - W. Trautmann 2008
The systematic data set on isotopic effects in spectator fragmentation collected recently at the GSI laboratory permits the investigation of the N/Z dependence of the nuclear caloric curve which is of interest in several respects. In particular, new light is shed on the proposed interpretation of chemical breakup temperatures as a manifestation of the limiting temperatures predicted by the Hartree-Fock model. The obtained results are discussed within the general context of temperature measurements in multifragmentation reactions.
Collisions involving 112Sn and 124Sn nuclei have been simulated with the improved Quantum Molecular Dynamics transport model. The results of the calculations reproduce isospin diffusion data from two different observables and the ratios of neutron an d proton spectra. By comparing these data to calculations performed over a range of symmetry energies at saturation density and different representations of the density dependence of the symmetry energy, constraints on the density dependence of the symmetry energy at sub-normal density are obtained. Results from present work are compared to constraints put forward in other recent analysis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا