ﻻ يوجد ملخص باللغة العربية
The density dependence of the nuclear symmetry energy is inspected using the Statistical Multifragmentation Model with Skyrme effective interactions. The model consistently considers the expansion of the fragments volumes at finite temperature at the freeze-out stage. By selecting parameterizations of the Skyrme force that lead to very different equations of state for the symmetry energy, we investigate the sensitivity of different observables to the properties of the effective forces. Our results suggest that, in spite of being sensitive to the thermal dilation of the fragments volumes, it is difficult to distinguish among the Skyrme forces from the isoscaling analysis. On the other hand, the isotopic distribution of the emitted fragments turns out to be very sensitive to the force employed in the calculation.
The decomposition of nuclear symmetry energy into spin and isospin components is discussed to elucidate the underlying properties of the NN bare interaction. This investigation was carried out in the framework of the Brueckner-Hartree-Fock theory of
The explicit density (rho) dependence in the coupling coefficients of the non-relativistic nuclear energy-density functional (EDF) encodes effects of three-nucleon forces and dynamical correlations. The necessity for a coupling coefficient in the for
The spinodal instabilities in hot asymmetric nuclear matter and some important critical parameters derived thereof are studied using six different families of relativistic mean-field (RMF) models. The slopes of the symmetry energy coefficient vary ov
In the present work we take the non relativistic limit of relativistic models and compare the obtained functionals with the usual Skyrme parametrization. Relativistic models with both constant couplings and with density dependent couplings are consid
The KIDS framework for the nuclear equation of state (EoS) and energy density functional (EDF) offers the possibility to explore symmetry-energy (SE) parameters such as J (value at saturation density), L (slope), Ksym (curvature) and so on independen