ترغب بنشر مسار تعليمي؟ اضغط هنا

Limiting symmetry energy elements from empirical evidence

49   0   0.0 ( 0 )
 نشر من قبل Chiranjib Mondal
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In the framework of an equation of state (EoS) constructed from a momentum and density-dependent finite-range two-body effective interaction, the quantitative magnitudes of the different symmetry elements of infinite nuclear matter are explored. The parameters of this interaction are determined from well-accepted characteristic constants associated with homogeneous nuclear matter. The symmetry energy coefficient $a_2$, its density slope $L_0$, the symmetry incompressibility $K_delta $ as well as the density dependent incompressibility $K(rho )$ evaluated with this EoS are seen to be in good harmony with those obtained from other diverse perspectives. The higher order symmetry energy coefficients $a_4,~a_6$ etc are seen to be not very significant in the domain of densities relevant to finite nuclei, but gradually build up at supra-normal densities. The analysis carried with a Skyrme-inspired energy density functional obtained with the same input values for the empirical bulk data associated with nuclear matter yields nearly the same results.

قيم البحث

اقرأ أيضاً

190 - Li Ou , Min Liu , Zhuxia Li 2013
The mass, isotope, and isobar distributions of limiting temperatures for finite nuclei are investigated by using a thermodynamics approach together with the Skyrme energy density functional. The relationship between the width of the isotope (isobar ) distribution of limiting temperatures and the stiffness of the density dependence of the symmetry energy clearly is observed. The nuclear symmetry energy with smaller slope parameter $L_{rm{sym}}$ causes a wider the isotope (isobar) distribution of limiting temperatures. The widths of the isotope (isobar) distributions of limiting temperatures could be useful observables for exploring the information of the density dependence of the nuclear symmetry energy at finite temperatures.
We show that the notion of partial dynamical symmetry is robust and founded on a microscopic many-body theory of nuclei. Based on the universal energy density functional framework, a general quantal boson Hamiltonian is derived and shown to have esse ntially the same spectroscopic character as that predicted by the partial SU(3) symmetry. The principal conclusion holds in two representative classes of energy density functionals: nonrelativistic and relativistic. The analysis is illustrated in application to the axially-deformed nucleus $^{168}$Er.
Within an isospin- and momentum-dependent hadronic transport model it is shown that the recent FOPI data on the $pi^-/pi^+$ ratio in central heavy-ion collisions at SIS/GSI energies (Willy Reisdorf {it et al.}, NPA {bf 781}, 459 (2007)) provide circu mstantial evidence suggesting a rather soft nuclear symmetry energy esym at $rhogeq 2rho_0$ compared to the Akmal-Pandharipande-Ravenhall prediction. Some astrophysical implications and the need for further experimental confirmations are discussed.
Using covariance analysis, we quantify the correlations between the interaction parameters in a transport model and the observables commonly used to extract information of the Equation of State of Asymmetric Nuclear Matter in experiments. By simulati ng $^{124}$Sn+$^{124}$Sn, $^{124}$Sn+$^{112}$Sn and $^{112}$Sn+$^{112}$Sn reactions at beam energies of 50 and 120 MeV per nucleon, we have identified that the nucleon effective mass splitting are most strongly correlated to the neutrons and protons yield ratios with high kinetic energy from central collisions especially at high incident energy. The best observable to determine the slope of the symmetry energy, L, at saturation density is the isospin diffusion observable even though the correlation is not very strong ($sim$0.7). Similar magnitude of correlation but opposite in sign exists for isospin diffusion and nucleon isoscalar effective mass. At 120 MeV/u, the effective mass splitting and the isoscalar effective mass also have opposite correlation for the double n/p and isoscaling p/p yield ratios. By combining data and simulations at different beam energies, it should be possible to place constraints on the slope of symmetry energy (L) and effective mass splitting with reasonable uncertainties.
76 - C.A. Bertulani 2019
I present a brief summary of the first three decades of studies of pygmy resonances in nuclei and their relation to the symmetry energy of nuclear matter. I discuss the first experiments and theories dedicated to study the electromagnetic response in halo nuclei and how a low energy peak was initially identified as a candidate for the pygmy resonance. This is followed by the description of a collective state in medium heavy and heavy nuclei which was definitely identified as a pygmy resonance. The role of the slope parameter of the symmetry energy in determining the properties of neutron stars is stressed. The theoretical and experimental information collected on pygmy resonances, neutron skins, and the numerous correlations found with the slope parameter is briefly reviewed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا