ﻻ يوجد ملخص باللغة العربية
The study of multi-band superconductivity is relevant for a variety of systems, from ultra cold atoms with population imbalance to particle physics, and condensed matter. As a consequence, this problem has been widely investigated bringing to light many new and interesting phenomena. In this work we point out and explore a correspondence between a two-band metal with a $k$-dependent hybridization and a uniformly polarized fermionic system in the presence of spin-orbit coupling (SOC). We study the ground state phase diagram of the metal in the presence of an attractive interaction. We find remarkable superconducting properties whenever hybridization mixes orbitals of different parities in neighboring sites. We show that this mechanism enhances superconductivity and drives the crossover from weak to strong coupling in analogy with SOC in cold atoms. We obtain the quantum phase transitions between the normal and superfluid states, as the intensity of different parameters characterizing the metal are varied, including Lifshitz transitions, with no symmetry breaking, associated with the appearance of soft modes in the Fermi surface.
We report the discovery of two-phase unconventional superconductivity in CeRh$_2$As$_2$. Using thermodynamic probes, we establish that the superconducting critical field of its high-field phase is as high as 14 T, remarkable in a material whose trans
We report observation of the enhancement of superconductivity near lattice dislocations and the absence of the strengthening of vortex pinning in odd-parity superconductor Sr$_2$RuO$_4$, both surprising results in direct contrast to the well known se
We analyze the possible interaction-induced superconducting instabilities in noncentrosymmetric systems based on symmetries of the normal state. It is proven that pure electron-phonon coupling will always lead to a fully gapped superconductor that do
The thermal conductivity kappa of the layered s-wave superconductor NbSe_2 was measured down to T_c/100 throughout the vortex state. With increasing field, we identify two regimes: one with localized states at fields very near H_c1 and one with highl
A proper understanding of the mechanism for cuprate superconductivity can emerge only by comparing materials in which physical parameters vary one at a time. Here we present a variety of bulk, resonance, and scattering measurements on the (Ca_xLa_{1-