ﻻ يوجد ملخص باللغة العربية
We report observation of the enhancement of superconductivity near lattice dislocations and the absence of the strengthening of vortex pinning in odd-parity superconductor Sr$_2$RuO$_4$, both surprising results in direct contrast to the well known sensitivity of superconductivity in Sr$_2$RuO$_4$ to disorder. The enhanced superconductivity appears to be related fundamentally to the two-component nature of the superconducting order parameter, as revealed in our phenomenological theory taking into account the effect of symmetry reduction near a dislocation.
Unambiguous identification of the superconducting order parameter symmetry of Sr$_2$RuO$_4$ has remained elusive for more than a quarter century. While a chiral $p$-wave ground state analogue to superfluid $^3$He-$A$ was ruled out only very recently,
Motivated by the success of experimental manipulation of the band structure through biaxial strain in Sr$_2$RuO$_4$ thin film grown on a mismatched substrate, we investigate theoretically the effects of biaxial strain on the electronic instabilities,
In conventional and high transition temperature copper oxide and iron pnictide superconductors, the Cooper pairs all have even parity. As a rare exception, Sr$_2$RuO$_4$ is the first prime candidate for topological chiral p-wave superconductivity, wh
Sr$_2$RuO$_4$ is a leading candidate for chiral $p$-wave superconductivity. The detailed mechanism of superconductivity in this material is still the subject of intense investigations. Since superconductivity is sensitive to the topology of the Fermi
We present a novel experimental evidence for the odd-parity nematic superconductivity in high-quality single crystals of doped topological insulator Sr$_x$Bi$_2$Se$_3$. The X-ray diffraction shows that the grown single crystals are either weakly stre