ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence of magnetic mechanism for cuprate superconductivity

235   0   0.0 ( 0 )
 نشر من قبل Amit Keren
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Amit Keren




اسأل ChatGPT حول البحث

A proper understanding of the mechanism for cuprate superconductivity can emerge only by comparing materials in which physical parameters vary one at a time. Here we present a variety of bulk, resonance, and scattering measurements on the (Ca_xLa_{1-x})(Ba_{1.75-x}La_{0.25+x})Cu_3O_y high temperature superconductors, in which this can be done. We determine the superconducting, Neel, glass, and pseudopage critical temperatures. In addition, we clarify which physical parameter varies, and, equally important, which does not, with each chemical modification. This allows us to demonstrate that a single energy scale, set by the superexchange interaction J, controls all the critical temperatures of the system. J, in-turn, is determined by the in plane Cu-O-Cu buckling angle.



قيم البحث

اقرأ أيضاً

To identify the microscopic mechanism of heavy-fermion Cooper pairing is an unresolved challenge in quantum matter studies; it may also relate closely to finding the pairing mechanism of high temperature superconductivity. Magnetically mediated Coope r pairing has long been the conjectured basis of heavy-fermion superconductivity but no direct verification of this hypothesis was achievable. Here, we use a novel approach based on precision measurements of the heavy-fermion band structure using quasiparticle interference (QPI) imaging, to reveal quantitatively the momentum-space (k-space) structure of the f-electron magnetic interactions of CeCoIn5. Then, by solving the superconducting gap equations on the two heavy-fermion bands $E_k^{alpha,beta}$ with these magnetic interactions as mediators of the Cooper pairing, we derive a series of quantitative predictions about the superconductive state. The agreement found between these diverse predictions and the measured characteristics of superconducting CeCoIn5, then provides direct evidence that the heavy-fermion Cooper pairing is indeed mediated by the f-electron magnetism.
We have computed alpha^2Fs for the hole-doped cuprates within the framework of the one-band Hubbard model, where the full magnetic response of the system is treated properly. The d-wave pairing weight alpha^2F_d is found to contain not only a low ene rgy peak due to excitations near (pi,pi) expected from neutron scattering data, but to also display substantial spectral weight at higher energies due to contributions from other parts of the Brillouin zone as well as pairbreaking ferromagnetic excitations at low energies. The resulting solutions of the Eliashberg equations yield transition temperatures and gaps comparable to the experimentally observed values, suggesting that magnetic excitations of both high and low energies play an important role in providing the pairing glue in the cuprates.
We report on the phase diagram for charge-stripe order in La(1.6-x)Nd(0.4)Sr(x)CuO(4), determined by neutron and x-ray scattering studies and resistivity measurements. From an analysis of the in-plane resistivity motivated by recent nuclear-quadrupol e-resonance studies, we conclude that the transition temperature for local charge ordering decreases monotonically with x, and hence that local antiferromagnetic order is uniquely correlated with the anomalous depression of superconductivity at x = 1/8. This result is consistent with theories in which superconductivity depends on the existence of charge-stripe correlations.
The interplay of magnetic and charge fluctuations can lead to quantum phases with exceptional electronic properties. A case in point is magnetically-driven superconductivity, where magnetic correlations fundamentally affect the underlying symmetry an d generate new physical properties. The superconducting wave-function in most known magnetic superconductors does not break translational symmetry. However, it has been predicted that modulated triplet p-wave superconductivity occurs in singlet d-wave superconductors with spin-density wave (SDW) order. Here we report evidence for the presence of a spatially inhomogeneous p-wave Cooper pair-density wave (PDW) in CeCoIn5. We show that the SDW domains can be switched completely by a tiny change of the magnetic field direction, which is naturally explained by the presence of triplet superconductivity. Further, the Q-phase emerges in a common magneto-superconducting quantum critical point. The Q-phase of CeCoIn5 thus represents an example where spatially modulated superconductivity is associated with SDW order.
Ab-initio density functional calculations on explicitly doped La(2-x)Sr(x)CuO4 find doping creates localized holes in out-of-plane orbitals. A model for superconductivity is developed based on the assumption that doping leads to the formation of hole s on a four-site Cu plaquette composed of the out-of-plane A1 orbitals apical O pz, planar Cu dz2, and planar O psigma. This is in contrast to the assumption of hole doping into planar Cu dx2-y2 and O psigma orbitals as in the t-J model. Interaction of holes with the d9 spin background leads to chiral polarons with either a clockwise or anti-clockwise charge current. When the polaron plaquettes percolate through the crystal at x~0.05 for LaSrCuO, a Cu dx2-y2 and planar O psigma band is formed. Spin exchange Coulomb repulsion with chiral polarons leads to D-wave superconductivity. The equivalent of the Debye energy in phonon superconductivity is the maximum energy separation between a chiral polaron and its time-reversed partner. An additive skew-scattering contribution to the Hall effect is induced by chiral polarons and leads to a temperature dependent Hall effect that fits the measured values for LaSrCuO. The integrated imaginary susceptibility satisfies omega/T scaling due to chirality and spin-flip scattering of polarons along with a uniform distribution of polaron energy splittings. The derived functional form is compatible with experiments. The static spin structure factor is computed and is incommensurate with a separation distance from (pi,pi) given by ~(2pi)x. Coulomb scattering of the x2-y2 band with polarons leads to linear resistivity. Coupling of the x2-y2 band to the undoped Cu d9 spins leads to the ARPES pseudogap and its doping and temperature dependence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا