ترغب بنشر مسار تعليمي؟ اضغط هنا

A Sparse and Adaptive Prior for Time-Dependent Model Parameters

60   0   0.0 ( 0 )
 نشر من قبل Dani Yogatama
 تاريخ النشر 2013
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the scenario where the parameters of a probabilistic model are expected to vary over time. We construct a novel prior distribution that promotes sparsity and adapts the strength of correlation between parameters at successive timesteps, based on the data. We derive approximate variational inference procedures for learning and prediction with this prior. We test the approach on two tasks: forecasting financial quantities from relevant text, and modeling language contingent on time-varying financial measurements.

قيم البحث

اقرأ أيضاً

Dealing with uncertainty is essential for efficient reinforcement learning. There is a growing literature on uncertainty estimation for deep learning from fixed datasets, but many of the most popular approaches are poorly-suited to sequential decisio n problems. Other methods, such as bootstrap sampling, have no mechanism for uncertainty that does not come from the observed data. We highlight why this can be a crucial shortcoming and propose a simple remedy through addition of a randomized untrainable `prior network to each ensemble member. We prove that this approach is efficient with linear representations, provide simple illustrations of its efficacy with nonlinear representations and show that this approach scales to large-scale problems far better than previous attempts.
Repertoire-based learning is a data-efficient adaptation approach based on a two-step process in which (1) a large and diverse set of policies is learned in simulation, and (2) a planning or learning algorithm chooses the most appropriate policies ac cording to the current situation (e.g., a damaged robot, a new object, etc.). In this paper, we relax the assumption of previous works that a single repertoire is enough for adaptation. Instead, we generate repertoires for many different situations (e.g., with a missing leg, on different floors, etc.) and let our algorithm selects the most useful prior. Our main contribution is an algorithm, APROL (Adaptive Prior selection for Repertoire-based Online Learning) to plan the next action by incorporating these priors when the robot has no information about the current situation. We evaluate APROL on two simulated tasks: (1) pushing unknown objects of various shapes and sizes with a robotic arm and (2) a goal reaching task with a damaged hexapod robot. We compare with Reset-free Trial and Error (RTE) and various single repertoire-based baselines. The results show that APROL solves both the tasks in less interaction time than the baselines. Additionally, we demonstrate APROL on a real, damaged hexapod that quickly learns to pick compensatory policies to reach a goal by avoiding obstacles in the path.
In compressed sensing, a small number of linear measurements can be used to reconstruct an unknown signal. Existing approaches leverage assumptions on the structure of these signals, such as sparsity or the availability of a generative model. A domai n-specific generative model can provide a stronger prior and thus allow for recovery with far fewer measurements. However, unlike sparsity-based approaches, existing methods based on generative models guarantee exact recovery only over their support, which is typically only a small subset of the space on which the signals are defined. We propose Sparse-Gen, a framework that allows for sparse deviations from the support set, thereby achieving the best of both worlds by using a domain specific prior and allowing reconstruction over the full space of signals. Theoretically, our framework provides a new class of signals that can be acquired using compressed sensing, reducing classic sparse vector recovery to a special case and avoiding the restrictive support due to a generative model prior. Empirically, we observe consistent improvements in reconstruction accuracy over competing approaches, especially in the more practical setting of transfer compressed sensing where a generative model for a data-rich, source domain aids sensing on a data-scarce, target domain.
We present a machine learning-based approach to lossy image compression which outperforms all existing codecs, while running in real-time. Our algorithm typically produces files 2.5 times smaller than JPEG and JPEG 2000, 2 times smaller than WebP, and 1.7 times smaller than BPG on datasets of generic images across all quality levels. At the same time, our codec is designed to be lightweight and deployable: for example, it can encode or decode the Kodak dataset in around 10ms per image on GPU. Our architecture is an autoencoder featuring pyramidal analysis, an adaptive coding module, and regularization of the expected codelength. We also supplement our approach with adversarial training specialized towards use in a compression setting: this enables us to produce visually pleasing reconstructions for very low bitrates.
While machine learning techniques have been successfully applied in several fields, the black-box nature of the models presents challenges for interpreting and explaining the results. We develop a new framework called Adaptive Explainable Neural Netw orks (AxNN) for achieving the dual goals of good predictive performance and model interpretability. For predictive performance, we build a structured neural network made up of ensembles of generalized additive model networks and additive index models (through explainable neural networks) using a two-stage process. This can be done using either a boosting or a stacking ensemble. For interpretability, we show how to decompose the results of AxNN into main effects and higher-order interaction effects. The computations are inherited from Googles open source tool AdaNet and can be efficiently accelerated by training with distributed computing. The results are illustrated on simulated and real datasets.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا