ترغب بنشر مسار تعليمي؟ اضغط هنا

Adaptive Explainable Neural Networks (AxNNs)

264   0   0.0 ( 0 )
 نشر من قبل Jie Chen
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

While machine learning techniques have been successfully applied in several fields, the black-box nature of the models presents challenges for interpreting and explaining the results. We develop a new framework called Adaptive Explainable Neural Networks (AxNN) for achieving the dual goals of good predictive performance and model interpretability. For predictive performance, we build a structured neural network made up of ensembles of generalized additive model networks and additive index models (through explainable neural networks) using a two-stage process. This can be done using either a boosting or a stacking ensemble. For interpretability, we show how to decompose the results of AxNN into main effects and higher-order interaction effects. The computations are inherited from Googles open source tool AdaNet and can be efficiently accelerated by training with distributed computing. The results are illustrated on simulated and real datasets.



قيم البحث

اقرأ أيضاً

Machine Learning algorithms are increasingly being used in recent years due to their flexibility in model fitting and increased predictive performance. However, the complexity of the models makes them hard for the data analyst to interpret the result s and explain them without additional tools. This has led to much research in developing various approaches to understand the model behavior. In this paper, we present the Explainable Neural Network (xNN), a structured neural network designed especially to learn interpretable features. Unlike fully connected neural networks, the features engineered by the xNN can be extracted from the network in a relatively straightforward manner and the results displayed. With appropriate regularization, the xNN provides a parsimonious explanation of the relationship between the features and the output. We illustrate this interpretable feature--engineering property on simulated examples.
In this paper, we propose a novel adaptive kernel for the radial basis function (RBF) neural networks. The proposed kernel adaptively fuses the Euclidean and cosine distance measures to exploit the reciprocating properties of the two. The proposed fr amework dynamically adapts the weights of the participating kernels using the gradient descent method thereby alleviating the need for predetermined weights. The proposed method is shown to outperform the manual fusion of the kernels on three major problems of estimation namely nonlinear system identification, pattern classification and function approximation.
We present a general-purpose method to train Markov chain Monte Carlo kernels, parameterized by deep neural networks, that converge and mix quickly to their target distribution. Our method generalizes Hamiltonian Monte Carlo and is trained to maximiz e expected squared jumped distance, a proxy for mixing speed. We demonstrate large empirical gains on a collection of simple but challenging distributions, for instance achieving a 106x improvement in effective sample size in one case, and mixing when standard HMC makes no measurable progress in a second. Finally, we show quantitative and qualitative gains on a real-world task: latent-variable generative modeling. We release an open source TensorFlow implementation of the algorithm.
Graph Neural Networks have emerged as a useful tool to learn on the data by applying additional constraints based on the graph structure. These graphs are often created with assumed intrinsic relations between the entities. In recent years, there hav e been tremendous improvements in the architecture design, pushing the performance up in various prediction tasks. In general, these neural architectures combine layer depth and node feature aggregation steps. This makes it challenging to analyze the importance of features at various hops and the expressiveness of the neural network layers. As different graph datasets show varying levels of homophily and heterophily in features and class label distribution, it becomes essential to understand which features are important for the prediction tasks without any prior information. In this work, we decouple the node feature aggregation step and depth of graph neural network and introduce several key design strategies for graph neural networks. More specifically, we propose to use softmax as a regularizer and Soft-Selector of features aggregated from neighbors at different hop distances; and Hop-Normalization over GNN layers. Combining these techniques, we present a simple and shallow model, Feature Selection Graph Neural Network (FSGNN), and show empirically that the proposed model outperforms other state of the art GNN models and achieves up to 64% improvements in accuracy on node classification tasks. Moreover, analyzing the learned soft-selection parameters of the model provides a simple way to study the importance of features in the prediction tasks. Finally, we demonstrate with experiments that the model is scalable for large graphs with millions of nodes and billions of edges.
Neural networks are generally built by interleaving (adaptable) linear layers with (fixed) nonlinear activation functions. To increase their flexibility, several authors have proposed methods for adapting the activation functions themselves, endowing them with varying degrees of flexibility. None of these approaches, however, have gained wide acceptance in practice, and research in this topic remains open. In this paper, we introduce a novel family of flexible activation functions that are based on an inexpensive kernel expansion at every neuron. Leveraging over several properties of kernel-based models, we propose multiple variations for designing and initializing these kernel activation functions (KAFs), including a multidimensional scheme allowing to nonlinearly combine information from different paths in the network. The resulting KAFs can approximate any mapping defined over a subset of the real line, either convex or nonconvex. Furthermore, they are smooth over their entire domain, linear in their parameters, and they can be regularized using any known scheme, including the use of $ell_1$ penalties to enforce sparseness. To the best of our knowledge, no other known model satisfies all these properties simultaneously. In addition, we provide a relatively complete overview on alternative techniques for adapting the activation functions, which is currently lacking in the literature. A large set of experiments validates our proposal.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا