ﻻ يوجد ملخص باللغة العربية
The Galactic Bulge Survey is a wide but shallow X-ray survey of regions above and below the Plane in the Galactic Bulge. It was performed using the Chandra X-ray Observatorys ACIS camera. The survey is primarily designed to find and classify low luminosity X-ray binaries. The combination of the X-ray depth of the survey and the accessibility of optical and infrared counterparts makes this survey ideally suited to identification of new symbiotic X-ray binaries in the Bulge. We consider the specific case of the X-ray source CXOGBS J173620.2-293338. It is coincident to within 1 arcsec with a very red star, showing a carbon star spectrum and irregular variability in the Optical Gravitational Lensing Experiment data. We classify the star as a late C-R type carbon star based on its spectral features, photometric properties, and variability characteristics, although a low-luminosity C-N type cannot be ruled out. The brightness of the star implies it is located in the Bulge, and its photometric properties overall are consistent with the Bulge carbon star population. Given the rarity of carbon stars in the Bulge, we estimate the probability of such a close chance alignment of any Galactic Bulge Survey source with a carbon star to be <1e-3 suggesting that this is likely to be a real match. If the X-ray source is indeed associated with the carbon star, then the X-ray luminosity is around 9e32 erg/s. Its characteristics are consistent with a low luminosity symbiotic X-ray binary, or possibly a low accretion rate white dwarf symbiotic.
We use K-band spectroscopy of the counterpart to the rapidly variable X-ray transient XMMU J174445.5-295044 to identify it as a new symbiotic X-ray binary. XMMU J174445.5-295044 has shown a hard X-ray spectrum (we verify its association with an Integ
Radio pulsars with millisecond spin periods are thought to have been spun up by transfer of matter and angular momentum from a low-mass companion star during an X-ray-emitting phase. The spin periods of the neutron stars in several such low-mass X-ra
The nature of very faint X-ray transients (VFXTs) - transient X-ray sources that peak at luminosities $L_Xlesssim10^{36} {rm erg s^{-1}}$ - is poorly understood. The faint and often short-lived outbursts make characterising VFXTs and their multi-wave
Context. GX 1+4 belongs to a rare class of X-ray binaries with red giant donors, symbiotic X-ray binaries. The system has a history of complicated variability on multiple timescales in the optical light and X-rays. The nature of this variability rema
Energy released when the core of a high-mass star collapses into a black hole often powers an explosion that creates a supernova remnant. Black holes have limited windows of observability, and consequently are rarely identified in association with su