ترغب بنشر مسار تعليمي؟ اضغط هنا

A supernova remnant associated with a nascent black hole low-mass X-ray binary

242   0   0.0 ( 0 )
 نشر من قبل Ashley Ruiter
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف N. I. Maxted




اسأل ChatGPT حول البحث

Energy released when the core of a high-mass star collapses into a black hole often powers an explosion that creates a supernova remnant. Black holes have limited windows of observability, and consequently are rarely identified in association with supernova remnants. Analysing multi-messenger data, we show that MAXI J1535-571 is the black hole produced in the stellar explosion that gave rise to the supernova remnant G323.7-1.0, making it the first case of an association between a black hole low-mass X-ray binary and a supernova remnant. Given this connection, we can infer from our modelling that the progenitor system was a close binary whose primary star had an initial mass of approx. 23-35 solar masses with a companion star about 10 times less massive.



قيم البحث

اقرأ أيضاً

A Chandra observation of the Large Magellanic Cloud supernova remnant DEM L241 reveals an interior unresolved source which is probably an accretion-powered binary. The optical counterpart is an O5III(f) star making this a High-Mass X-ray Binary (HMXB ) with orbital period likely to be of order tens of days. Emission from the remnant interior is thermal and spectral information is used to derive density and mass of the hot material. Elongation of the remnant is unusual and possible causes of this are discussed. The precursor star probably had mass > 25 solar masses
We report the discovery of a very young high-mass X-ray binary (HMXB) system associated with the supernova remnant (SNR) MCSNRJ0513-6724 in the Large Magellanic Cloud (LMC), using XMM-Newton X-ray observations. The HMXB is located at the geometrical centre of extended soft X-ray emission, which we confirm as an SNR. The HMXB spectrum is consistent with an absorbed power law with spectral index ~1.6 and a luminosity of 7x10^{33} ergs/s (0.2--12 keV). Tentative X-ray pulsations are observed with a periodicity of 4.4 s and the OGLE I-band light curve of the optical counterpart from more than 17.5 years reveals a period of 2.2324pm0.0003 d, which we interpret as the orbital period of the binary system. The X-ray spectrum of the SNR is consistent with non-equilibrium shock models as expected for young/less evolved SNRs. From the derived ionisation time scale we estimate the age of the SNR to be <6 kyr. The association of the HMXB with the SNR makes it the youngest HMXB, in the earliest evolutionary stage known to date. A HMXB as young as this can switch on as an accreting pulsar only when the spin period has reached a critical value. Under this assumption, we obtain an upper limit to the magnetic field of < 5x10^{11} G. This implies several interesting possibilities including magnetic field burial, possibly by an episode of post-supernova hyper-critical accretion. Since these fields are expected to diffuse out on a timescale of 10^{3}-10^{4} years, the discovery of a very young HMXB can provide us the unique opportunity to observe the evolution of the observable magnetic field for the first time in X-ray binaries.
AT2019wey (SRGA J043520.9+552226, SRGE J043523.3+552234) is a transient first reported by the ATLAS optical survey in 2019 December. It rose to prominence upon detection, three months later, by the Spektrum-Roentgen-Gamma (SRG) mission in its first a ll-sky survey. X-ray observations reported in Yao et al. suggest that AT2019wey is a Galactic low-mass X-ray binary (LMXB) with a black hole (BH) or neutron star (NS) accretor. Here we present ultraviolet, optical, near-infrared, and radio observations of this object. We show that the companion is a short-period (P < 16 hr) low-mass (< 1 Msun) star. We consider AT2019wey to be a candidate BH system since its locations on the L_radio--L_X and L_opt--L_X diagrams are closer to BH binaries than NS binaries. We demonstrate that from 2020 June to August, despite the more than 10 times brightening at radio and X-ray wavelengths, the optical luminosity of AT2019wey only increased by 1.3--1.4 times. We interpret the UV/optical emission before the brightening as thermal emission from a truncated disk in a hot accretion flow and the UV/optical emission after the brightening as reprocessing of the X-ray emission in the outer accretion disk. AT2019wey demonstrates that combining current wide-field optical surveys and SRG provides a way to discover the emerging population of short-period BH LMXB systems with faint X-ray outbursts.
111 - T.P. Roberts 2003
We present evidence, based on Chandra ACIS-S observations of the nearby spiral galaxy NGC 6946, that the extraodinary X-ray luminosity of the MF 16 supernova remnant actually arises in a black-hole X-ray binary. This conclusion is drawn from the poin t-like nature of the X-ray source, its X-ray spectrum closely resembling the spectrum of other ultraluminous X-ray sources thought to be black-hole X-ray binary systems, and the detection of rapid hard X-ray variability from the source. We briefly discuss the nature of the hard X-ray variability, and the origin of the extreme radio and optical luminosity of MF 16 in light of this identification.
We report the discovery of a bright transient X-ray source, CXOU J132518.2-430304, towards Centaurus A (Cen A) using six new Chandra X-Ray Observatory observations in 2007 March--May. Between 2003 and 2007, its flux has increased by a factor of >770. The source is likely a low-mass X-ray binary in Cen A with unabsorbed 0.3-10 keV band luminosities of (2-3) x 10^{39} erg s^-1 and a transition from the steep-power law state to the thermal state during our observations. CXOU J132518.2-430304 is the most luminous X-ray source in an early-type galaxy with extensive timing information that reveals transience and a spectral state transition. Combined with its luminosity, these properties make this source one of the strongest candidates to date for containing a stellar-mass black hole in an early-type galaxy. Unless this outburst lasts many years, the rate of luminous transients in Cen A is anomalously high compared to other early-type galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا