ﻻ يوجد ملخص باللغة العربية
In 1963, Shrikhande and Raghavarao published a recursive construction for designs that starts with a resolvable design (the master design) and then uses a second design (the indexing design) to take certain unions of blocks in each parallel class of the master design. Several variations of this construction have been studied by different authors. We revisit this construction, concentrating on the case where the master design is a resolvable BIBD and the indexing design is a 3-design. We show that this construction yields a 3-design under certain circumstances. The resulting 3-designs have block size k = v/2 and they are resolvable. We also construct some previously unknown simple designs by this method.
Multi-access coded caching schemes from cross resolvable designs (CRD) have been reported recently cite{KNRarXiv}. To be able to compare coded caching schemes with different number of users and possibly with different number of caches a new metric ca
The purpose of this paper is to give explicit constructions of unitary $t$-designs in the unitary group $U(d)$ for all $t$ and $d$. It seems that the explicit constructions were so far known only for very special cases. Here explicit construction mea
Recently multi-access coded caching schemes with number of users different from the number of caches obtained from a special case of resolvable designs called Cross Resolvable Designs (CRDs) have been reported and a new performance metric called rate
The iterative absorption method has recently led to major progress in the area of (hyper-)graph decompositions. Amongst other results, a new proof of the Existence conjecture for combinatorial designs, and some generalizations, was obtained. Here, we
The Assmus-Mattson theorem gives a way to identify block designs arising from codes. This result was broadened to matroids and weighted designs. In this work we present a further two-fold generalisation: first from matroids to polymatroids and also f