ﻻ يوجد ملخص باللغة العربية
Multi-access coded caching schemes from cross resolvable designs (CRD) have been reported recently cite{KNRarXiv}. To be able to compare coded caching schemes with different number of users and possibly with different number of caches a new metric called rate-per-user was introduced and it was shown that under this new metric the schemes from CRDs perform better than the Maddah-Ali-Niesen scheme in the large memory regime. In this paper a new class of CRDs is presented and it is shown that the multi-access coded caching schemes derived from these CRDs perform better than the Maddah-Ali-Niesen scheme in the entire memory regime. Comparison with other known multi-access coding schemes is also presented.
Recently multi-access coded caching schemes with number of users different from the number of caches obtained from a special case of resolvable designs called Cross Resolvable Designs (CRDs) have been reported and a new performance metric called rate
The multi-access variant of the coded caching problem in the presence of an external wiretapper is investigated . A multi-access coded caching scheme with $K$ users, $K$ caches and $N$ files, where each user has access to $L$ neighbouring caches in a
The demand private coded caching problem in a multi-access network with $K$ users and $K$ caches, where each user has access to $L$ neighbouring caches in a cyclic wrap-around manner, is studied. The additional constraint imposed is that one user sho
We consider multi-access coded caching problem introduced by Hachem et.al., where each user has access to $L$ neighboring caches in a cyclic wrap-around fashion. We focus on the deterministic schemes for a specific class of multi-access coded caching
Coded caching schemes with low subpacketization and small transmission rate are desirable in practice due to the requirement of low implementation complexity and efficiency of the transmission. Placement delivery arrays (PDA in short) can be used to