ﻻ يوجد ملخص باللغة العربية
Recent experiments of thin films flowing down a vertical fiber with varying nozzle diameters present a wealth of new dynamics that illustrate the need for more advanced theory. We present a detailed analysis using a full lubrication model that includes slip boundary conditions, nonlinear curvature terms, and a film stabilization term. This study brings to focus the presence of a stable liquid layer playing an important role in the full dynamics. We propose a combination of these physical effects to explain the observed velocity and stability of traveling droplets in the experiments and their transition to isolated droplets. This is also supported by stability analysis of the traveling wave solution of the model.
A thin liquid film falling on a uniformly heated horizontal plate spreads into fingering ripples that can display a complex dynamics ranging from continuous waves, nonlinear spatially localized periodic wave patterns (i.e. rivulet structures) to modu
We present the results of large scale simulations of 4th order nonlinear partial differential equations of dif- fusion type that are typically encountered when modeling dynamics of thin fluid films on substrates. The simulations are based on the alte
We consider a free surface thin film placed on a thermally conductive substrate and exposed to an external heat source in a setup where the heat absorption depends on the local film thickness. Our focus is on modeling film evolution while the film is
Recent experimental observations have demonstrated interesting instability phenomenon during thermal drawing of microstructured glass/polymer fibers, and these observations motivate us to examine surface-tension-driven instabilities in concentric cyl
The present study aims to investigate the motion of buoyant rings in vertical soap films. Thickness differences and related bi-dimensional densities are considered as the motor leading to bi-dimensional buoyancy. We show how this effect can be re-int