ترغب بنشر مسار تعليمي؟ اضغط هنا

Raman Fingerprints of Graphene Produced by Anodic Electrochemical Exfoliation

197   0   0.0 ( 0 )
 نشر من قبل Vaiva Nagyte
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electrochemical exfoliation is one of the most promising methods for scalable production of graphene. However, limited understanding of its Raman spectrum as well as lack of measurement standards for graphene strongly limit its industrial applications. In this work we show a systematic study of the Raman spectrum of electrochemically exfoliated graphene, produced using different electrolytes and different types of solvents in varying amounts. We demonstrate that no information on the thickness can be extracted from the shape of the 2D peak as this type of graphene is defective. Furthermore, the number of defects and the uniformity of the samples strongly depend on the experimental conditions, including post-processing. Under specific conditions, formation of short conductive trans-polyacetylene chains has been observed. Our Raman analysis provides guidance for the community on how to get information on defects coming from electrolyte, temperature and other experimental conditions, by making Raman spectroscopy a powerful metrology tool.

قيم البحث

اقرأ أيضاً

67 - Sanjin J. Gutic 2018
Increasing energy demands of modern society requires deep understanding of the properties of energy storage materials as well as their performance tuning. We show that the capacitance of graphene oxide (GO) can be precisely tuned using a simple elect rochemical reduction route. In situ resistance measurements, combined with cyclic voltammetry measurement and Raman spectroscopy, have shown that upon the reduction GO is irreversibly deoxygenated which is further accompanied with structural ordering and increasing of electrical conductivity. The capacitance is maximized when the concentration of oxygen functional groups is properly balanced with the conductivity. Any further reduction and de-oxygenation leads to the gradual loss of the capacitance. The observed trend is independent on the preparation route and on the exact chemical and structural properties of GO. It is proposed that an improvement of capacitive properties of any GO can be achieved by optimization of its reduction conditions.
The scalable and high-efficiency production of two-dimensional (2D) materials is a prerequisite to their commercial use. Currently, only graphene and graphene oxide can be produced on a ton scale, and the inability to produce other 2D materials on su ch a large scale hinders their technological applications. Here we report a grinding exfoliation method that uses micro-particles as force intermediates to resolve applied compressive forces into a multitude of small shear forces, inducing the highly-efficient exfoliation of layer materials. The method, referred to as intermediate-assisted grinding exfoliation (iMAGE), can be used for the large-scale production of many 2D materials. As an example, we have exfoliated bulk h-BN into 2D h-BN with large flake sizes, high quality and structural integrity, with a high exfoliation yield of 67%, a high production rate of 0.3 g h-1 and a low energy consumption of 3.01x10^6 J g-1. The production rate and energy consumption are one to two orders of magnitude better than previous results. Besides h-BN, this iMAGE technology has been used to exfoliate various layer materials such as graphite, black phosphorus, transition metal dichalcogenides, and metal oxides, proving its universality. Molybdenite concentrate, a natural low-cost and abundant mineral, was used as a demo for the large-scale exfoliation production of 2D MoS2 flakes. Our work indicates the huge potential of the iMAGE method to produce large amounts of various 2D materials, which paves the way for their commercial application.
Synthesis of graphene with reduced use of chemical reagents is essential for manufacturing scale-up and to control its structure and properties. In this paper, we report on a novel chemical-free mechanism of graphene exfoliation from graphite using l aser impulse. Our experimental setup consists of a graphite slab irradiated with an Nd:YAG laser of wavelength 532 nm and 10 ns pulse width. The results show the formation of graphene layers with conformational morphology from electron microscopy and Raman spectra. Based on the experimental results, we develop a simulation set up within the framework of the molecular dynamics that supplies the laser-induced electromagnetic energies to atoms in the graphite slab. We investigate the influence of different laser fluence on the exfoliation process of graphene. The variations in inter-layer interaction energy and inter-layer distance are the confirmative measures for the possible graphene layer formation. The simulation results confirm the exfoliation of a single layer graphene sheet for the laser power ranging from 100x10^(-14) to 2000x10^(-14) J/nm2. With an increase of laser fluence from 2000x10^(-14) to 4000x10^(-14) J/nm2, there is an increase in the graphene yield via the layer-after-layer exfoliation. The bridging bond dynamics between the successive graphene layers govern the possibility of second-layer exfoliation. The experimental and simulation observations are useful and promising for producing chemical-free graphene on a large scale for industrial and commercial applications.
Bottom-up approaches allow the production of ultra-narrow and atomically precise graphene nanoribbons (GNRs), with electronic and optical properties controlled by the specific atomic structure. Combining Raman spectroscopy and ab-initio simulations, we show that GNR width, edge geometry and functional groups all influence their Raman spectra. The low-energy spectral region below 1000 cm-1 is particularly sensitive to edge morphology and functionalization, while the D peak dispersion can be used to uniquely fingerprint the presence of GNRs, and differentiates them from other sp2 carbon nanostructures.
182 - Shubham Agrawal , Peng Bai 2020
Electrochemical energy systems rely on particulate porous electrodes to store or convert energies. While the three-dimensional porous structures were introduced to maximize the interfacial area for better overall performance of the system, spatiotemp oral heterogeneities arose from materials thermodynamics localize the charge transfer processes onto a limited portion of the available interfaces. Here, we demonstrate a simple but precision method that can directly track and analyze the operando (i.e. local and reacting) interfaces at the mesoscale in a practical graphite porous electrode to obtain the true local current density, which turned out to be two orders of magnitude higher than the globally averaged current density adopted by existing studies. Our results resolve the long-standing discrepancies between kinetics parameters derived from electroanalytical measurements and from first principles predictions. Contradictory to prevailing beliefs, the electrochemical dynamics is not controlled by the solid-state diffusion process once the spatiotemporal reaction heterogeneities emerge in porous electrodes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا