ترغب بنشر مسار تعليمي؟ اضغط هنا

Structural Analysis and Superconducting Properties of F-Substituted NdOBiS2 Single Crystals

121   0   0.0 ( 0 )
 نشر من قبل Masanori Nagao
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

F-substituted NdOBiS2 superconducting single crystals were grown using CsCl/KCl flux. This is the first example of the single-crystal growth of a BiS2-based superconductor. The obtained single crystals had a plate-like shape with a size of 1-2 mm and a well-developed ab-plane. The crystal structure of the grown crystals was determined by single-crystal X-ray diffraction analysis to be the tetragonal space group P4/nmm (#129) with a = 3.996(3) A and c = 13.464(6) A. The chemical formula of the grown crystals was approximately Nd0.98(0.06)O0.7(0.1)F0.3(0.1)Bi0.98(0.04)S2, and Cs, K, and Cl were not detected in the grown crystals by electron probe microanalysis. The grown crystals had a critical temperature of approximately 5 K. The superconducting anisotropy of the single crystals was estimated to be about 30 from the effective mass model and the upper critical field.



قيم البحث

اقرأ أيضاً

F-substituted LaOBiSe2 single crystals were grown using CsCl flux. The obtained single crystals showed a plate-like shape with a size of about 1.0 mm square. The c-axis lattice constant of the grown crystals was determined to be 14.114(3) {AA}. The s uperconducting critical temperature of the single crystal was approximately 3.5 K. The superconducting anisotropies were determined to be 49 and 24 using the upper critical field and the effective mass model, respectively.
F-substituted ROBiS2 (R = La, Ce, Nd) superconducting single crystals with different F concentration were grown successfully using CsCl/KCl flux. All the obtained single crystals had a plate-like shape with a well-developed ab-plane of 1-2 mm in size . The flux components of Cs, K, and Cl were not detected in the obtained single crystals by electron probe microanalysis. The grown single crystals of F-substituted LaOBiS2 and CeOBiS2 showed superconducting at about 3 K while the Tc of the F-substituted NdOBiS2 exhibited approximately 5 K. The superconducting anisotropy of the single crystals of F-substituted LaOBiS2 and NdOBiS2 was estimated to be 30-45 according to the effective mass model whereas those values were 13-21 for the F-substituted CeOBiS2 single crystals. The F-substituted CeOBiS2 single crystals exhibited magnetic order at about 7 K that apparently coexisted with superconductivity below around 3 K.
We have successfully synthesized a new BiS2-based superconductor NdOBiS2 with F-doping. This compound is composed of superconducting BiS2 layers and blocking NdO layers, which indicates that the BiS2 layer is the one of the common superconducting lay ers like the CuO2 layer of cuprates or Fe-As layer of Fe-based superconductors. We can obtain NdO1-xFxBiS2 with bulk superconductivity by a solid-state reaction under ambient pressure. Therefore, NdO1-xFxBiS2 should be the suitable material to elucidate the mechanism of superconductivity in the BiS2-layer.
Single crystals of RbOs2O6 have been grown from Rb2O and Os in sealed quartz ampoules. The crystal structure has been identified at room temperature as cubic with the lattice constant a = 10.1242(12) A. The anisotropy of the tetrahedral and octahedra l networks is lower and the displacement parameters of alkali metal atoms are smaller than for KOs2O6, so the rattling of the alkali atoms in RbOs2O6 is less pronounced. Superconducting properties of RbOs2O6 in the mixed state have been well described within the London approach and the Ginzburg-Landau parameter kappa(0) = 31 has been derived from the reversible magnetization. This parameter is field dependent and changes at low temperatures from kappa = 22 (low fields) to kappa = 31 at H_{c2}. The thermodynamic critical field H_{c}(0) = 1.3 kOe and the superconducting gap 2delta/k_{B}T_{c} = 3.2 have been estimated. These results together with slightly different H_{c2}(T) dependence obtained for crystals and polycrystalline RbOs2O6 proof evidently that this compound is a weak-coupling BCS-type superconductor close to the dirty limit.
The superconducting gap Delta has been measured in Bi2Sr2-xLaxCuO6+d single crystals in a wide range of temperatures 4.2 K < T < Tc by point-contact and tunnelling spectroscopy for current in c-direction. The value of Delta(4.2 K) was found to scale with the critical temperature Tc in the whole range of doping levels with the ratio 2D/kTc = 12.5 +/- 2. The closing of the gap Ds at T = Tc has been registered in the underdoped, optimally doped as well as in the overdoped sam-ples.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا